Comparative study on microstructure and mechanical properties of a novel nano-composite strengthening heat-resistant steel and two typical heat-resistant steels

[1]  V. Vodárek,et al.  The Effect of Vanadium on Modified Z-Phase Characteristics in Austenitic Steels , 2023, Crystals.

[2]  Bhagyaraj Jayabalan,et al.  Controlled precipitation and recrystallization to achieve superior mechanical properties of severely deformed Inconel 718 alloy , 2022, Materials Chemistry and Physics.

[3]  Renyuan Zhou,et al.  Effect of vanadium addition on the corrosion behavior of S30432 austenitic heat-resistant steel aged at 650 °C for different times , 2022, Journal of Materials Science.

[4]  Yinsheng He,et al.  Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C , 2022, Materials.

[5]  Nobuo Nakada,et al.  Serrated Flow Accompanied with Dynamic Type Transition of the Portevin–Le Chatelier Effect in Austenitic Stainless Steel , 2022, SSRN Electronic Journal.

[6]  Y. Estrin,et al.  Dynamic strain aging mechanisms in a metastable austenitic stainless steel , 2021 .

[7]  W. Limin,et al.  Failure analysis: Sulfur stress corrosion cracking of S30432 stainless steel in the final super-heater , 2020 .

[8]  Kaimeng Wang,et al.  Low cycle fatigue behavior and microstructure evolution of a novel Fe-22Cr-15Ni austenitic heat-resistant steel , 2020 .

[9]  M. M. Skripalenko,et al.  Statistical Research of Stainless Austenitic Steel Grain Size Distribution after Screw Rolling , 2020, Materials.

[10]  Li-hui Zhu,et al.  Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K , 2020 .

[11]  A. Zieliński,et al.  Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750 °C , 2020, Materials Science and Engineering: A.

[12]  Sushant K. Manwatkar,et al.  Dynamic Strain Aging and Embrittlement Behavior of IN718 During High-Temperature Deformation , 2020, Metallurgical and Materials Transactions A.

[13]  J. Bai,et al.  Effect of carbon on microstructure and mechanical properties of HR3C type heat resistant steels , 2020 .

[14]  J. Du,et al.  Multiphase Strengthening of Nanosized Precipitates in a Cost‐Effective Austenitic Heat‐Resistant Steel , 2020, steel research international.

[15]  Huijun Li,et al.  Microstructures and tensile properties of an austenitic ODS heat resistance steel , 2019, Materials Science and Engineering: A.

[16]  Zou Yong,et al.  Evaluation of intergranular corrosion susceptibility of Super304H steel after being aged at 600°C , 2019, IOP Conference Series: Earth and Environmental Science.

[17]  Youtang Li,et al.  Precipitate evolution during the aging of Super304H steel and its influence on impact toughness , 2019, Materials Science and Engineering: A.

[18]  Cong-qian Cheng,et al.  Precipitation Behavior of σ Phase in Ultra-Supercritical Boiler Applied HR3C Heat-Resistant Steel , 2019, Acta Metallurgica Sinica (English Letters).

[19]  Zhen Zhang,et al.  Investigation the effect of precipitating characteristics on the creep behavior of HR3C austenitic steel at 650 ℃ , 2019, Materials Science and Engineering: A.

[20]  W. Limin,et al.  Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy , 2018, Materials Science and Engineering: A.

[21]  Eric J. Palmiere,et al.  Effect of austenite grain size on acicular ferrite transformation in a HSLA steel , 2018, Materials Characterization.

[22]  M. Wendler,et al.  On the Critical Driving Force for Deformation‐Induced α′‐Martensite Formation in Austenitic Cr–Mn–Ni Steels , 2018, Advanced Engineering Materials.

[23]  Li-hui Zhu,et al.  Microstructural Evolution and the Effect on Hardness and Impact Toughness of Sanicro 25 Welded Joints After Aging at 973 K , 2018, Metallurgical and Materials Transactions A.

[24]  Pei Wang,et al.  The tensile behaviors of vanadium-containing 25Cr-20Ni austenitic stainless steel at temperature between 200 °C and 900 °C , 2018 .

[25]  H. Jing,et al.  Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures , 2017 .

[26]  S. Schmauder,et al.  Microstructure evolution in HR3C austenitic steel during long-term creep at 650 °C , 2017 .

[27]  Yaxin Xu,et al.  Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term service , 2016 .

[28]  A. Zieliński,et al.  The Effect of Long-Term Impact of Elevated Temperature on Changes in Microstructure and Mechanical Properties of HR3C Steel , 2016 .

[29]  B. K. Choudhary,et al.  Stage-II tensile work hardening behaviour of type 316L(N) austenitic stainless steel , 2016 .

[30]  Dianzhong Li,et al.  Precipitation of M23C6 and its effect on tensile properties of 0.3C-20Cr-11Mn-1Mo-0.35N steel , 2015 .

[31]  C. Sommitsch,et al.  Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel , 2015 .

[32]  Z. Kuboň New Austenitic Creep Resistant Steels for Superheaters of USC Boilers , 2014 .

[33]  C. L. Zhang,et al.  Influence of chemical composition on intergranular corrosion susceptibility of novel Super304H austenitic heat-resistant steel , 2014 .

[34]  J. Liu,et al.  Effect of high temperature aging on microstructure and mechanical properties of HR3C heat resistant steel , 2014 .

[35]  Han-Sheng Bao,et al.  Evolution of Precipitates of S31042 Heat Resistant Steel During 700 °C Aging , 2013 .

[36]  Chuanhai Jiang,et al.  Surface mechanical properties of S30432 austenitic steel after shot peening , 2012 .

[37]  Zhijun Zheng,et al.  Intergranular corrosion susceptibility of a novel Super304H stainless steel , 2012 .

[38]  Xishan Xie,et al.  The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application , 2012 .

[39]  Li-hui Zhu,et al.  Strengthening mechanisms of precipitates in S30432 heat-resistant steel during short-term aging , 2012 .

[40]  June-Soo Park,et al.  Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel , 2011 .

[41]  Jiaqiang Gao,et al.  The effect of M23C6 on the high-temperature tensile strength of two austenitic heat-resistant steels: 22Cr–25Ni–Mo–Nb–N and 25Cr–20Ni–Nb–N , 2011 .

[42]  M. Igarashi,et al.  Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers , 2007 .

[43]  R. Viswanathan,et al.  Materials for ultra-supercritical coal-fired power plant boilers , 2006 .

[44]  Wenzhe Chen,et al.  Effect of dynamic strain aging on high temperature properties of austenitic stainless steel , 2004 .

[45]  J. Moteff,et al.  Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21° and 816°C , 1973 .

[46]  Yi-Wen Cheng,et al.  Effect of Aging on the Toughness of Heat-Resistant 22Cr-15Ni-4Cu Austenitic Steel , 2021, Journal of Physics: Conference Series.

[47]  Li-hui Zhu,et al.  Strengthening Mechanism of S30432 Austenitic Heat-resistant Steel , 2010 .

[48]  Y. Sawaragi,et al.  The Development of a New 18-8 Austenitic Stainless Steel (0.lC-18Cr-9Ni-3Cu-Nb, N) with High Elevated Temperatures Strength for Fossil Power Boilers , 1992 .