Succinct Parallelizable Arguments of Knowledge

. We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument system with the following three properties for computing and proving a time T (non-deterministic) computation: While the third property is standard in succinct arguments, the com-bination of all three is desirable as it gives a way to leverage moderate parallelism in favor of near-optimal running time. We emphasize that even a factor two overhead in the prover’s parallel running time is not allowed.Ourmain results are the following, all for non-deterministic polynomial-time RAM computation. We construct (1) an (interactive) SPARK based solely on the existence of collision-resistant hash functions, and (2) a non-interactive SPARK based on any collision-resistant hash function and any SNARK with quasi-linear overhead (as satisfied by recent SNARK constructions).

[1]  Nico Döttling,et al.  Tight Verifiable Delay Functions , 2020, IACR Cryptol. ePrint Arch..

[2]  Ilan Komargodski,et al.  Continuous Verifiable Delay Functions , 2020, IACR Cryptol. ePrint Arch..

[3]  Rafail Ostrovsky,et al.  Trapdoor Hash Functions and Their Applications , 2019, IACR Cryptol. ePrint Arch..

[4]  Benjamin Wesolowski,et al.  Efficient Verifiable Delay Functions , 2019, Journal of Cryptology.

[5]  Ron Rothblum,et al.  Delegating Computations with (Almost) Minimal Time and Space Overhead , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  Dan Boneh,et al.  Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[7]  Jeremiah Blocki,et al.  Sustained Space Complexity , 2017, IACR Cryptol. ePrint Arch..

[8]  Jeremiah Blocki,et al.  Depth-Robust Graphs and Their Cumulative Memory Complexity , 2017, EUROCRYPT.

[9]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs , 2016, TCC.

[10]  Yael Tauman Kalai,et al.  Delegating RAM Computations , 2016, TCC.

[11]  G. Rothblum,et al.  Constant-round interactive proofs for delegating computation , 2016, Electron. Colloquium Comput. Complex..

[12]  Vladimir Kolmogorov,et al.  On the Complexity of Scrypt and Proofs of Space in the Parallel Random Oracle Model , 2016, EUROCRYPT.

[13]  Joël Alwen,et al.  High Parallel Complexity Graphs and Memory-Hard Functions , 2015, IACR Cryptol. ePrint Arch..

[14]  Jon Howell,et al.  Geppetto: Versatile Verifiable Computation , 2015, 2015 IEEE Symposium on Security and Privacy.

[15]  Kai-Min Chung,et al.  Constant-Round Concurrent Zero Knowledge from P-Certificates , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[16]  Eli Ben-Sasson,et al.  SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge , 2013, CRYPTO.

[17]  Eli Ben-Sasson,et al.  On the concrete efficiency of probabilistically-checkable proofs , 2013, STOC '13.

[18]  Craig Gentry,et al.  Pinocchio: Nearly Practical Verifiable Computation , 2013, 2013 IEEE Symposium on Security and Privacy.

[19]  Dario Fiore,et al.  Vector Commitments and Their Applications , 2013, Public Key Cryptography.

[20]  Nir Bitansky,et al.  Succinct Arguments from Multi-prover Interactive Proofs and Their Efficiency Benefits , 2012, CRYPTO.

[21]  Nir Bitansky,et al.  From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again , 2012, ITCS '12.

[22]  Yael Tauman Kalai,et al.  Delegating computation: interactive proofs for muggles , 2008, STOC.

[23]  Eli Ben-Sasson,et al.  Short PCPs with Polylog Query Complexity , 2008, SIAM J. Comput..

[24]  Paul Valiant,et al.  Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency , 2008, TCC.

[25]  Rafael Pass,et al.  Concurrent Nonmalleable Commitments , 2008, SIAM J. Comput..

[26]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[27]  Silvio Micali,et al.  Local zero knowledge , 2006, STOC '06.

[28]  Moni Naor,et al.  Pebbling and Proofs of Work , 2005, CRYPTO.

[29]  Moni Naor,et al.  On Memory-Bound Functions for Fighting Spam , 2003, CRYPTO.

[30]  Yehuda Lindell,et al.  Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation , 2001, Journal of Cryptology.

[31]  Oded Goldreich,et al.  Universal arguments and their applications , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[32]  Silvio Micali,et al.  Computationally Sound Proofs , 2000, SIAM J. Comput..

[33]  R. Cramer,et al.  Linear Zero-Knowledgde. A Note on Efficient Zero-Knowledge Proofs and Arguments , 1996 .

[34]  Ralph C. Merkle,et al.  A Certified Digital Signature , 1989, CRYPTO.

[35]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[36]  Ron Rothblum,et al.  Local Proofs Approaching the Witness Length [Extended Abstract] , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[37]  Krzysztof Pietrzak,et al.  Simple Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[38]  Dan Boneh,et al.  A Survey of Two Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[39]  Ion Stoica,et al.  DIZK: A Distributed Zero Knowledge Proof System , 2018, IACR Cryptol. ePrint Arch..

[40]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs with Constant Rate and Query Complexity , 2017, ICALP.

[41]  Nir Bitansky,et al.  The Hunting of the SNARK , 2016, Journal of Cryptology.

[42]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[43]  Yael Tauman Kalai,et al.  Interactive PCP , 2007 .