EMC-oriented full-wave modelling of passive MMIC structures for wireless applications

A class of full-wave models useful to tackle emc problems in passive mmic structures, as well as in conventional electronic circuitry, employed in wireless technology applications is presented. Upon using the appropriate dyadic Green’s function, the prediction of undesired emi effects, a widely addressed problem in high package-density modules, is performed by accounting for both electromagnetic coupling and surface/volume wave excitation. Particular efforts have been devoted to the simulation of circuits in realistic exciting/loading situations through the derivation of equivalent network representations. The resulting full-wave models allow an accurate prediction of possible emc problems in mmics already during the design stage, thus paving the way to low-cost solutions for emi reduction.RésuméUne classe de modèles dynamique apte à traiter des problèmes de compatibilité électromagnétique dans les structures passives, dans les circuits intégrés hyperfrequences, mais également dans les circuits électroniques classiques, utilisés en télécommunication sansfil est présentée. Grâce à l’utilisation de la fonction de Green dyadique appropriée, il est possible de déterminer les effets indésirables des perturbations électromagnetiques, qui constituent un problème dans les modules à haute densité d’intégration, en tenant compte à la fois des couplages électromagnétiques et des excitations par ondes de surfaces et de volume. Des efforts particuliers ont été consacrés à la simulation de circuits dans les situations réalistes d’excitation et de charges avec établissement de réseaux électriques équivalents. Les modèles obtenus permettent de simuler avec précision les éventuels problèmes de cem dans les circuits intégrés hyperfréquences, et ceci dès la phase de conception, ouvrant ainsi la voie à des solutions à bas coût pour la réduction des effets des perturbations électromagnetiques.

[1]  Jean-Fu Kiang On resonance and shielding of printed traces on a circuit board , 1990 .

[2]  Larry K. Warne,et al.  Relation between equivalent antenna radius and transverse line dipole moments of a narrow slot aperture having depth , 1988 .

[3]  I. Wolff,et al.  Scalarization of dyadic spectral Green's functions and network formalism for three-dimensional full-wave analysis of planar lines and antennas , 1994 .

[4]  C. R. Paul,et al.  Modeling electromagnetic interference properties of printed circuit boards , 1989 .

[5]  G. I. Costache,et al.  A note on the optimum layout of electronic circuits to minimize the radiated electromagnetic field strength , 1988 .

[6]  N. Alexopoulos,et al.  Broadband Microstrip Antennas on Electrically Thick Substrates , 1993 .

[7]  C. Paul Introduction to electromagnetic compatibility , 2005 .

[8]  D. Pozar,et al.  A rigorous analysis of a microstripline fed patch antenna , 1987 .

[9]  U. Gothelf,et al.  Full-wave analysis of a two slot microstrip filter using a new algorithm for computation of the spectral integrals , 1993 .

[10]  Raj Mittra,et al.  The propagation characteristics of signal lines embedded in a multilayered structure in the presence of a periodically perforated ground plane , 1988 .

[11]  J. Mosig Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation , 1988 .

[12]  J. L. Norman Violette,et al.  An Introduction to Electromagnetic Compatibility , 1987 .

[13]  T. S. Smith,et al.  Effect of grid spacing on the inductance of ground grids , 1991, IEEE 1991 International Symposium on Electromagnetic Compatibility.

[14]  Paolo Bernardi,et al.  A full-wave model for EMI prediction in planar microstrip circuits excited in the near-field of a short electric dipole , 1995 .

[15]  G. R. Kline,et al.  Development of miniature filters for wireless applications , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[16]  C. E. Baum,et al.  Field-containing inductors , 1988 .

[17]  Saied N. Tehrani,et al.  Low power HFET down converter MMIC's for wireless communication applications , 1995 .

[18]  K. Michalski,et al.  Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I. Theory , 1990 .

[19]  A. Faraone,et al.  An expansion function suited for fast full‐wave spectral domain analysis of microstrip discontinuities , 1994 .

[20]  Paolo Bernardi,et al.  Dyadic Green's functions for conductor-backed layered structures excited by arbitrary tridimensional sources , 1994 .

[21]  B. J. Rubin The Propagation Characteristics of Signal Lines in a Mesh-Plane Environment , 1984 .

[22]  P. Katehi,et al.  Frequency-Dependent Characteristics of Microstrip Discontinuities in Millimeter-Wave Integrated Circuits , 1985 .

[23]  D. Pozar,et al.  Full-Wave Analysis of Microstrip Open-End and Gap Discontinuities , 1985 .

[24]  Nicolaos G. Alexopoulos,et al.  A rigorous dispersive characterization of microstrip cross and tee junctions , 1990 .

[25]  Paolo Bernardi,et al.  A full-wave characterization of an interconnecting line printed on a dielectric slab backed by a gridded ground plane , 1996 .

[26]  P. B. Katehi,et al.  Characterization of microstrip discontinuities on multilayer dielectric substrates including radiation losses , 1989 .

[27]  H. L. Bertoni,et al.  Waves Guided by Conductive Strips Above a Periodically Perforated Ground Plane , 1983 .

[28]  Henry W. Ott,et al.  Noise Reduction Techniques in Electronic Systems , 1976 .

[29]  Nicolaos G. Alexopoulos,et al.  The moment method solution for printed antennas of arbitrary configuration , 1987, 1987 Antennas and Propagation Society International Symposium.

[30]  I. Toyoda,et al.  Three-dimensional passive circuit technology for ultra-compact MMICs , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[31]  Nicolaos G. Alexopoulos,et al.  Microstrip open-end and gap discontinuities in a substrate-superstrate structure , 1989 .

[32]  Nicolaos G. Alexopoulos,et al.  Basic blocks for high-frequency interconnects: theory and experiment , 1988 .

[33]  B. K. Gilbert,et al.  Analysis of transmission lines of finite thickness above a periodically perforated ground plane at oblique orientations , 1995 .

[34]  Renato G. Bosisio,et al.  Spectral-domain analysis of radiating cylindrical dielectric resonator for wireless communications [WLANs] , 1995 .

[35]  У Отт Генри,et al.  Методы подавления шумов и помех в электронных системах. (Noise reduction techniques in electronic systems) , 1979 .

[36]  Ieee Microwave Theory,et al.  Analysis and design of planar microwave components , 1994 .

[37]  P. Pathak,et al.  On the dyadic Green's function for a planar multilayered dielectric/magnetic media , 1992 .