Refined crystal structure of gamma-chymotrypsin at 1.9 A resolution. Comparison with other pancreatic serine proteases.

The crystal structure of γ-chymotrypsin, the monomeric form of chymotrypsin, has been determined and refined to a crystallographic R-factor of 0.18 at 1.9 A resolution. The details of the catalytic triad involving Asp102, His57 and Ser195 agree well with the results found for trypsin (Chambers & Stroud, 1979) and Streptomyces griseus protease A (Sielecki et al., 1979). As in many of the other serine proteases, the Oγ of Ser195 does not appear to be hydrogen-bonded to His57. The three-dimensional structures of γ- and α-chymotrypsin (Birktoft & Blow, 1972) are closely similar. The largest backbone differences occur in the “calcium binding loop” (residues 75 to 78) and in the “autolysis loop” (residues 146, 149 and 150). Ala149 and Asn150 are disordered in γ-chymotrypsin, whereas they are stabilized by intermolecular interactions in α-chymotrypsin. The conformation of Ser218 is also different, presumably the indirect result of the dimeric interactions of α-chymotrypsin. These results are discussed in terms of the slow, pH-dependent interconversion of α- and γ-chymotrypsin.

[1]  W. Bode,et al.  The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. , 1975, Journal of molecular biology.

[2]  R. Diamond A real-space refinement procedure for proteins , 1971 .

[3]  A. Tulinsky,et al.  Changes in the tertiary structure of alpha-chymotrypsin with change in pH: p4 4.2-6.7. , 1973, Biochemistry.

[4]  R. Huber,et al.  Structural basis of the activation and action of trypsin , 1978 .

[5]  A. Tulinsky,et al.  The structure of α‐chymotrypsin. II. Fourier phase refinement and extension of the dimeric structure at 1.8 Å resolution by density modification , 1979 .

[6]  D. Davies,et al.  The three-dimensional structure at 6 A resolution of a human gamma Gl immunoglobulin molecule. , 1971, The Journal of biological chemistry.

[7]  L. Delbaere,et al.  Molecular structure of the α-lytic protease from Myxobacter 495 at 2·8 Å resolution☆ , 1979 .

[8]  W. Cochran Some properties of the (Fo–Fc)-synthesis , 1951 .

[9]  D. Cruickshank The determination of the anisotropic thermal motion of atoms in crystals , 1956 .

[10]  M. Lazdunski,et al.  The association of anhydrotrypsin with the pancreatic trypsin inhibitors. , 1974, Biochemistry.

[11]  S. N. Timasheff,et al.  Dimerization of alpha-chymotrypsin. I. pH dependence in the acid region. , 1971, Biochemistry.

[12]  L. Delbaere,et al.  Protein structure refinement: Streptomyces griseus serine protease A at 1.8 A resolution. , 1979, Journal of molecular biology.

[13]  B. Matthews,et al.  Relation between γ- and α-chymotrypsin , 1968 .

[14]  J Deisenhofer,et al.  Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. , 1974, Journal of molecular biology.

[15]  D. Shotton,et al.  Amino-acid Sequence of Porcine Pancreatic Elastase and its Homologies with other Serine Proteinases , 1970, Nature.

[16]  D. Blow,et al.  Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin , 1969, Nature.

[17]  Jerry S. Cohen Structure of ?-chymotrypsin at 5.5 p resolution , 1969 .

[18]  D. M. Blow,et al.  Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. , 1972, Journal of molecular biology.

[19]  R. Schlueter,et al.  Physicochemical investigation of the chymotrypsins. II. On the mechanism of dimerization of chymotrypsin. , 1957, Archives of biochemistry and biophysics.

[20]  D. Matthews,et al.  Re-examination of the charge relay system in subtilisin comparison with other serine proteases. , 1977, The Journal of biological chemistry.

[21]  T. Horbett,et al.  Reevaluation of the activation of bovine chymotrypsinogen A. , 1971, Biochemistry.

[22]  A. D. McLachlan,et al.  A mathematical procedure for superimposing atomic coordinates of proteins , 1972 .

[23]  H. Neurath,et al.  Carboxyl terminal groups of proteolytic enzymes. II. Chymotrypsins. , 1953, The Journal of biological chemistry.

[24]  J. E. McQueen,et al.  Computer manipulation of (macro)molecules with the method of local change , 1974 .

[25]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[26]  M. Kunitz FORMATION OF NEW CRYSTALLINE ENZYMES FROM CHYMOTRYPSIN : ISOLATION OF BETA AND GAMMA CHYMOTRYPSIN. , 1938 .

[27]  W. Bode,et al.  The single calcium‐binding site of crystalline bovine β‐trypsin , 1975 .

[28]  S. N. Timasheff,et al.  Low pH dimerization of chymotrypsin in solution. , 1978, Biochemistry.

[29]  R. Diamond,et al.  A mathematical model-building procedure for proteins , 1966 .

[30]  R. Henderson Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. , 1970, Journal of molecular biology.

[31]  J. W. Campbell,et al.  The atomic structure of crystalline porcine pancreatic elastase at 2.5 A resolution: comparisons with the structure of alpha-chymotrypsin. , 1976, Journal of molecular biology.

[32]  J. Kraut,et al.  Structure of Subtilisin BPN′ at 2.5 Å Resolution , 1969, Nature.

[33]  L. Delbaere,et al.  Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences. , 1978, Canadian journal of biochemistry.

[34]  R. Corey,et al.  PRELIMINARY X-RAY DIFFRACTION STUDIES OF CRYSTAL FORMS OF FREE AND INHIBITED CHYMOTRYPSIN. , 1965, Biochimica et biophysica acta.

[35]  Robert M. Stroud,et al.  The accuracy of refined protein structures: comparison of two independently refined models of bovine trypsin , 1978 .

[36]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[37]  R Diamond,et al.  Real-space refinement of the structure of hen egg-white lysozyme. , 1977, Journal of molecular biology.

[38]  L. Delbaere,et al.  The 2.8 A resolution structure of Streptomyces griseus protease B and its homology with alpha-chymotrypsin and Streptomyces griseus protease A. , 1979, Canadian Journal of Biochemistry.

[39]  M. Levitt,et al.  Conformation of amino acid side-chains in proteins. , 1978, Journal of molecular biology.

[40]  J. Kraut,et al.  Subtilisin; a stereochemical mechanism involving transition-state stabilization. , 1972, Biochemistry.

[41]  G. Cohen,et al.  Substrate binding site in bovine chymotrypsin A-gamma. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. , 1971, Biochemistry.

[42]  M. J. Avery,et al.  Is -chymotrypsin an autolytic product in the activation scheme of chymotrypsinogen A? , 1973, Biochimica et biophysica acta.

[43]  F M Richards,et al.  The matching of physical models to three-dimensional electron-density maps: a simple optical device. , 1968, Journal of molecular biology.