Structural results on circular-arc graphs and circle graphs: A survey and the main open problems

Circular-arc graphs are the intersection graphs of open arcs on a circle. Circle graphs are the intersection graphs of chords on a circle. These graph classes have been the subject of much study for many years and numerous interesting results have been reported. Many subclasses of both circular-arc graphs and circle graphs have been defined and different characterizations formulated. In this survey, we summarize the most important structural results related to circular-arc graphs and circle graphs and present the main open problems.

[1]  Jeremy P. Spinrad,et al.  Polynomial time recognition of unit circular-arc graphs , 2006, J. Algorithms.

[2]  Hubert de Fraysseix,et al.  A Characterization of Circle Graphs , 1984, Eur. J. Comb..

[3]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory B.

[4]  P. Hell,et al.  Interval bigraphs and circular arc graphs , 2004 .

[5]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[6]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[7]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[8]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[9]  V. Klee,et al.  Combinatorial Geometry in the Plane , 1964 .

[10]  Alan C. Tucker,et al.  An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..

[11]  Maria Chudnovsky,et al.  Detecting a Theta or a Prism , 2008, SIAM J. Discret. Math..

[12]  Michaël Rao,et al.  Diamond-free circle graphs are Helly circle , 2010, Discret. Math..

[13]  K. R. Parthasarathy,et al.  The strong perfect-graph conjecture is true for K1, 3-free graphs , 1976, J. Comb. Theory, Ser. B.

[14]  Pavol Hell,et al.  Lexicographic orientation and representation algorithms for comparability graphs, proper circular arc graphs, and proper interval graphs , 1995, J. Graph Theory.

[15]  Walid Naji,et al.  Reconnaissance des graphes de cordes , 1985, Discret. Math..

[16]  Gregory A Petsko,et al.  Dominoes , 2011, Genome Biology.

[17]  S. Olariu,et al.  On a unique tree representation for P4-extendible graphs , 1991, Discret. Appl. Math..

[18]  Jeremy P. Spinrad Circular-arc graphs with clique cover number two , 1988, J. Comb. Theory, Ser. B.

[19]  Sang-il Oum,et al.  Circle graph obstructions under pivoting , 2009 .

[20]  Stephan Olariu,et al.  Paw-Fee Graphs , 1988, Inf. Process. Lett..

[21]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[22]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.

[23]  James G. Oxley,et al.  Matroid theory , 1992 .

[24]  Jayme Luiz Szwarcfiter,et al.  Characterizations and recognition of circular-arc graphs and subclasses: A survey , 2009, Discret. Math..

[25]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[26]  S. Olariu,et al.  A New Class of Brittle Graphs , 1989 .

[27]  Alan Tucker,et al.  Characterizing circular-arc graphs , 1970 .

[28]  Emmanuel Gasse A proof of a circle graph characterization , 1997, Discret. Math..

[29]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[30]  Jayme Luiz Szwarcfiter,et al.  Efficient construction of unit circular-arc models , 2006, SODA '06.

[31]  William T. Trotter,et al.  Characterization problems for graphs, partially ordered sets, lattices, and families of sets , 1976, Discret. Math..

[32]  Jayme Luiz Szwarcfiter,et al.  Linear-Time Recognition of Helly Circular-Arc Models and Graphs , 2011, Algorithmica.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Jayme Luiz Szwarcfiter,et al.  Characterizations and Linear Time Recognition of Helly Circular-Arc Graphs , 2006, COCOON.

[35]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[36]  André Bouchet,et al.  Reducing prime graphs and recognizing circle graphs , 1987, Comb..

[37]  Celina M. H. de Figueiredo,et al.  Tree loop graphs , 2007, Discret. Appl. Math..

[38]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[39]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[40]  André Bouchet,et al.  Bipartite graphs that are not circle graphs , 1999 .

[41]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[42]  Nicolas Trotignon,et al.  Detecting induced subgraphs , 2007, Electron. Notes Discret. Math..

[43]  Martín Darío Safe,et al.  On circular-arc graphs having a model with no three arcs covering the circle , 2014, ArXiv.

[44]  Vassilis Giakoumakis,et al.  On P 4 -tidy graphs , 1997 .

[45]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[46]  Lim Chong-Keang,et al.  On Graphs Without Multicliqual Edges , 1981 .

[47]  Gottfried Tinhofer,et al.  Strong tree-cographs are birkhoff graphs , 1989, Discret. Appl. Math..

[48]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[49]  Dale Skrien,et al.  A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs , 1982, J. Graph Theory.

[50]  A. Itai,et al.  QUEUES, STACKS AND GRAPHS , 1971 .

[51]  Flavia Bonomo,et al.  Partial characterizations of circle graphs , 2011, Discret. Appl. Math..

[52]  Jayme Luiz Szwarcfiter,et al.  Proper Helly Circular-Arc Graphs , 2007, WG.

[53]  C. Paul Aspects algorithmiques de la décomposition modulaire , 2006 .

[54]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[55]  Fanica Gavril,et al.  Algorithms for a maximum clique and a maximum independent set of a circle graph , 1973, Networks.

[56]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[57]  Jørgen Bang-Jensen,et al.  Locally semicomplete digraphs: A generalization of tournaments , 1990, J. Graph Theory.

[58]  Pavol Hell,et al.  Obstructions to chordal circular-arc graphs of small independence number , 2013, Electron. Notes Discret. Math..

[59]  André Bouchet,et al.  Unimodularity and circle graphs , 1987, Discret. Math..

[60]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[61]  Jørgen Bang-Jensen,et al.  On chordal proper circular arc graphs , 1994, Discret. Math..

[62]  Jan Arne Telle,et al.  Classes of graphs with restricted interval models , 1999, Discret. Math. Theor. Comput. Sci..

[63]  Vassilis Giakoumakis,et al.  On P4-tidy graphs , 1997, Discrete Mathematics & Theoretical Computer Science.

[64]  Guillermo Durán,et al.  Some new results on circle graphs , 2002 .

[65]  M. Conforti (K 4 -e)-free perfect graphs and star cutsets , 1989 .

[66]  Guillermo Durán,et al.  Sobre grafos intersección de arcos y cuerdas en un círculo , 2000 .

[67]  Martin Charles Golumbic,et al.  Perfect Elimination and Chordal Bipartite Graphs , 1978, J. Graph Theory.

[68]  Alan Tucker Coloring perfect (K4 - e)-free graphs , 1987, J. Comb. Theory, Ser. B.

[69]  Pavol Hell,et al.  Two remarks on circular arc graphs , 1997, Graphs Comb..

[70]  Flavia Bonomo,et al.  Partial characterizations of circular‐arc graphs , 2008, J. Graph Theory.

[71]  V. Klee What Are the Intersection Graphs of Arcs in a Circle , 1969 .

[72]  Giuseppe Confessore,et al.  An approximation result for a periodic allocation problem , 2001, Discret. Appl. Math..