Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces

We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher's discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.

[1]  Gunnar Rätsch,et al.  A Mathematical Programming Approach to the Kernel Fisher Algorithm , 2000, NIPS.

[2]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[3]  Alexander Gammerman,et al.  Ridge Regression Learning Algorithm in Dual Variables , 1998, ICML.

[4]  Johan A. K. Suykens,et al.  Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis , 2002, Neural Computation.

[5]  Bernhard Schölkopf,et al.  An improved training algorithm for kernel Fisher discriminants , 2001, AISTATS.

[6]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[7]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[8]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[9]  Gunnar Rätsch,et al.  Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces , 2002, Machine Learning.

[10]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[11]  R. C. Williamson,et al.  Classification on proximity data with LP-machines , 1999 .

[12]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[13]  S. Keerthi,et al.  SMO Algorithm for Least-Squares SVM Formulations , 2003, Neural Computation.

[14]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[15]  Sun-Yuan Kung,et al.  Principal Component Neural Networks: Theory and Applications , 1996 .

[16]  Volker Roth,et al.  Nonlinear Discriminant Analysis Using Kernel Functions , 1999, NIPS.

[17]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[18]  Bernard Victorri,et al.  Transformation invariance in pattern recognition: Tangent distance and propagation , 2000 .

[19]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[20]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[21]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[22]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[23]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[24]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[25]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[26]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[27]  Bernhard Schölkopf,et al.  The connection between regularization operators and support vector kernels , 1998, Neural Networks.

[28]  Gunnar Rätsch,et al.  Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Wai Lam,et al.  Automatic Textual Document Categorization Based on Generalized Instance Sets and a Metamodel , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[31]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[32]  Yann LeCun,et al.  Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.

[33]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .