Buried power rail integration for CMOS scaling beyond the 3 nm node
暂无分享,去创建一个
H. Mertens | Z. Tao | G. Mannaert | K. Devriendt | S. Demuynck | N. Horiguchi | N. Jourdan | K. Vandersmissen | N. Heylen | O. Pedreira | S. Biesemans | Z. Tokei | F. Sebaai | E. Altamirano Sánchez | S. Subramanian | L. Teugels | A. Sepúlveda | G. Murdoch | Y. Siew | D. Radisic | K. Kenis | C. Lorant | F. Schleicher | N. Rassoul | B. Briggs | E. Capogreco | E. Dupuy | B. Chehab | J. Bömmels | A. Gupta | B. Chan | A. Peter | E. Rosseel | E. Litta | D. Zhou | S. Wang
[1] H. Mertens,et al. Middle-of-line plasma dry etch challenges for buried power rail integration , 2022, Advanced Lithography.
[2] Christopher J. Wilson,et al. Buried Power Rail Integration With FinFETs for Ultimate CMOS Scaling , 2020, IEEE Transactions on Electron Devices.
[3] J. Ryckaert,et al. First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers , 2020, 2020 IEEE Symposium on VLSI Technology.
[4] Diederik Verkest,et al. Buried Power Rails and Back-side Power Grids: Arm® CPU Power Delivery Network Design Beyond 5nm , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).
[5] J. Ryckaert,et al. Extending the roadmap beyond 3nm through system scaling boosters: A case study on Buried Power Rail and Backside Power Delivery , 2019, 2019 Electron Devices Technology and Manufacturing Conference (EDTM).
[6] G. Bouche,et al. The Complementary FET (CFET) for CMOS scaling beyond N3 , 2018, 2018 IEEE Symposium on VLSI Technology.