HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5σ for shift values from different simulations and derive shift α(z) − 1 = (0.300 ± 0.015) %[D(z)/D(0)]2 using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations. After reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the initial and the low redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compare with the Zel'dovich approximation and the shifts measured from the χ2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations, but we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 h−3 Gpc3 of cosmological Particle-Mesh simulations from Takahashi et al. At an expected sample variance level of 1%, the agreement between the Fisher matrix estimates based on Seo and Eisenstein and the N-body results is better than 10%.

[1]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[2]  D. Eisenstein,et al.  A NEW STATISTIC FOR ANALYZING BARYON ACOUSTIC OSCILLATIONS , 2010, 1001.2324.

[3]  N. Padmanabhan,et al.  Reconstructing baryon oscillations , 2009, 0909.1802.

[4]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[5]  Martin White,et al.  Calibrating the baryon oscillation ruler for matter and halos , 2009, 0906.1198.

[6]  Takahiro Nishimichi,et al.  Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces , 2009, 0906.0507.

[7]  N. Yoshida,et al.  SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM , 2009, 0902.0371.

[8]  Durham,et al.  Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.

[9]  Martin White,et al.  Reconstructing baryon oscillations: A Lagrangian theory perspective , 2008, 0812.2905.

[10]  E. Gaztañaga,et al.  First cosmological constraints on dark energy from the radial baryon acoustic scale. , 2008, Physical review letters.

[11]  F. Castander,et al.  Clustering of luminous red galaxies – III. Baryon acoustic peak in the three-point correlation , 2008 .

[12]  Eiichiro Komatsu,et al.  PERTURBATION THEORY RELOADED. II. NONLINEAR BIAS, BARYON ACOUSTIC OSCILLATIONS, AND MILLENNIUM SIMULATION IN REAL SPACE , 2008, 0805.2632.

[13]  D. Eisenstein,et al.  Non-linear Structure Formation and the Acoustic Scale , 2022 .

[14]  Durham,et al.  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[15]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[16]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[17]  N. Yoshida,et al.  Simulations of baryon acoustic oscillations – I. Growth of large-scale density fluctuations , 2008, 0802.1808.

[18]  J. Frieman,et al.  THE CORRELATION FUNCTION OF OPTICALLY SELECTED GALAXY CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY , 2008, 0801.3485.

[19]  A. Szalay,et al.  Large-Scale Anisotropic Correlation Function of SDSS Luminous Red Galaxies , 2007, 0711.3640.

[20]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[21]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[22]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[23]  S. Matarrese,et al.  Resumming cosmic perturbations , 2007, astro-ph/0703563.

[24]  Durham,et al.  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[25]  D. Eisenstein,et al.  Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale , 2007, astro-ph/0701079.

[26]  Y. Jing,et al.  Bispectrum and Nonlinear Biasing of Galaxies: Perturbation Analysis, Numerical Simulation, and SDSS Galaxy Clustering , 2006, astro-ph/0609740.

[27]  R. Smith,et al.  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[28]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[29]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[30]  Michael S. Warren,et al.  Simulations of baryon oscillations , 2006, astro-ph/0607061.

[31]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[32]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[33]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[34]  D. Eisenstein,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2006, astro-ph/0604362.

[35]  E. Komatsu,et al.  Perturbation Theory Reloaded: Analytical Calculation of Nonlinearity in Baryonic Oscillations in the Real-Space Matter Power Spectrum , 2006, astro-ph/0604075.

[36]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis , 2006, astro-ph/0603451.

[37]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[38]  M. Crocce,et al.  Memory of initial conditions in gravitational clustering , 2005, astro-ph/0509419.

[39]  Ž. Ivezić,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[40]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0512201.

[41]  D. Eisenstein,et al.  Baryonic Acoustic Oscillations in Simulated Galaxy Redshift Surveys , 2005, astro-ph/0507338.

[42]  M. White Baryon oscillations , 2005, astro-ph/0507307.

[43]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[44]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[45]  Edwin Sirko,et al.  Initial Conditions to Cosmological N-Body Simulations, or, How to Run an Ensemble of Simulations , 2005, astro-ph/0503106.

[46]  Joseph Silk,et al.  Reconstruction of primordial density fields , 2005, astro-ph/0501217.

[47]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[48]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[49]  S. Bridle,et al.  Cosmology with photometric redshift surveys , 2004, astro-ph/0411713.

[50]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[51]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[52]  E. Linder Baryon oscillations as a cosmological probe , 2003, astro-ph/0304001.

[53]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[54]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[55]  S. Masi,et al.  The cosmic microwave background anisotropy power spectrum measured by archeops , 2002, astro-ph/0210305.

[56]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[57]  J. Bond,et al.  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[58]  Caltech,et al.  PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 568, 38 Preprint typeset using L ATEX style emulateapj v. 14/09/00 DASI FIRST RESULTS: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND ANGULAR , 2002 .

[59]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[60]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[61]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[62]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[63]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[64]  J. Peacock,et al.  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[65]  R. Scoccimarro Transients from initial conditions: a perturbative analysis , 1997, astro-ph/9711187.

[66]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[67]  M. White,et al.  Acoustic Signatures in the Cosmic Microwave Background , 1996, astro-ph/9602019.

[68]  N. Sugiyama,et al.  Small-Scale Cosmological Perturbations: An Analytic Approach , 1995, astro-ph/9510117.

[69]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[70]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[71]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[72]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[73]  Arjun Dey,et al.  Next Generation Wide-Field Multi-Object Spectroscopy , 2002 .

[74]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .