Complete Graphical Language for Hermiticity-Preserving Superoperators

Universal and complete graphical languages have been successfully designed for pure state quantum mechanics, corresponding to linear maps between Hilbert spaces, and mixed states quantum mechanics, corresponding to completely positive superoperators. In this paper, we go one step further and present a universal and complete graphical language for Hermiticity-preserving superoperators. Such a language opens the possibility of diagrammatic compositional investigations of antilinear transformations featured in various physical situations, such as the Choi-Jamio{\l}kowski isomorphism, spin-flip, or entanglement witnesses. Our construction relies on an extension of the ZW-calculus exhibiting a normal form for Hermitian matrices.

[1]  E. Cavalcanti,et al.  Variations on the Choi-Jamiolkowski isomorphism , 2022, 2211.16533.

[2]  S. Perdrix,et al.  A Complete Equational Theory for Quantum Circuits , 2022, 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[3]  M. Gu,et al.  Operational applications of the diamond norm and related measures in quantifying the non-physicality of quantum maps , 2021, Quantum.

[4]  Erik Aurell,et al.  Symmetries of quantum evolutions , 2021, Physical Review Research.

[5]  O. Oreshkov,et al.  The Multi-round Process Matrix , 2020, Quantum.

[6]  T. Carette Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Notations. (Manier le ZX-calcul, flexsymétrie, systèmes ouverts et limandes) , 2021 .

[7]  J. V. D. Wetering ZX-calculus for the working quantum computer scientist , 2020, 2012.13966.

[8]  Sam Staton,et al.  Quantum channels as a categorical completion , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[9]  Simon Perdrix,et al.  Completeness of Graphical Languages for Mixed States Quantum Mechanics , 2019, ICALP.

[10]  Stefano Gogioso,et al.  Categorical Semantics for Time Travel , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[11]  Renaud Vilmart,et al.  A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[12]  Marco T'ulio Quintino,et al.  Implementing positive maps with multiple copies of an input state , 2018, Physical Review A.

[13]  A. Kissinger,et al.  ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity , 2018, QPL.

[14]  Quanlong Wang,et al.  Two complete axiomatisations of pure-state qubit quantum computing , 2018, LICS.

[15]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[16]  Amar Hadzihasanovic,et al.  The algebra of entanglement and the geometry of composition , 2017, ArXiv.

[17]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[18]  Armin Uhlmann,et al.  Anti- (conjugate) linearity , 2015, 1507.06545.

[19]  Amar Hadzihasanovic,et al.  A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[20]  Shuangshuang Fu,et al.  Channel-state duality , 2013 .

[21]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[22]  C. Vafa,et al.  Advanced Quantum Mechanics , 2012 .

[23]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[24]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[25]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[26]  Daniel R. Terno,et al.  Vectorization of quantum operations and its use , 2009, 0911.2539.

[27]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[28]  Scott Aaronson,et al.  Closed timelike curves make quantum and classical computing equivalent , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Simon Perdrix,et al.  Bases in Diagrammatic Quantum Protocols , 2008, MFPS.

[30]  Bob Coecke,et al.  Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.

[31]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[32]  Samson Abramsky,et al.  Geometry of Interaction and linear combinatory algebras , 2002, Mathematical Structures in Computer Science.

[33]  N J Cerf,et al.  Quantum cloning machines with phase-conjugate input modes. , 2001, Physical review letters.

[34]  S. Massar Collective versus local measurements on two parallel or antiparallel spins , 2000, quant-ph/0004035.

[35]  N. Gisin,et al.  Spin Flips and Quantum Information for Antiparallel Spins , 1999, quant-ph/9901072.

[36]  R. Werner,et al.  Optimal manipulations with qubits: Universal-NOT gate , 1999, quant-ph/9901053.

[37]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[38]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[39]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[40]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[41]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  E. Wigner Ueber die Operation der Zeitumkehr in der Quantenmechanik , 1993 .

[43]  David J. Foulis,et al.  Tensor products and probability weights , 1987 .

[44]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[45]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[46]  J. Pillis Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .

[47]  A. Wightman,et al.  PCT, spin and statistics, and all that , 1964 .

[48]  E. Wigner Normal Form of Antiunitary Operators , 1960 .

[49]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .