An Output-Sensitive Approach for the L 1/L ∞ k-Nearest-Neighbor Voronoi Diagram

This paper revisits the k-nearest-neighbor (k-NN) Voronoi diagram and presents the first output-sensitive paradigm for its construction. It introduces the k-NN Delaunay graph, which corresponds to the graph theoretic dual of the k-NN Voronoi diagram, and uses it as a base to directly compute the k-NN Voronoi diagram in R2. In the L1, L∞ metrics this results in O((n + m) log n) time algorithm, using segment-dragging queries, where m is the structural complexity (size) of the k-NN Voronoi diagram of n point sites in the plane. The paper also gives a tighter bound on the structural complexity of the k-NN Voronoi diagram in the L∞ (equiv. L1) metric, which is shown to be O(min{k(n - k), (n - k)2}).

[1]  Bernard Chazelle An algorithm for segment-dragging and its implementation , 2005, Algorithmica.

[2]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[3]  Jirí Matousek,et al.  Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.

[4]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[5]  Ketan Mulmuley,et al.  On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..

[6]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[7]  M. Hanan,et al.  On Steiner’s Problem with Rectilinear Distance , 1966 .

[8]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.

[9]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing kth-Order Voronoi Diagrams , 1985, IEEE Transactions on Computers.

[10]  Prosenjit Bose,et al.  On Structural and Graph Theoretic Properties of Higher Order Delaunay Graphs , 2009, Int. J. Comput. Geom. Appl..

[11]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[12]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[13]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[14]  Joachim Gudmundsson,et al.  Higher order Delaunay triangulations , 2000, Comput. Geom..

[15]  Evanthia Papadopoulou,et al.  Net-Aware Critical Area Extraction for Opens in VLSI Circuits Via Higher-Order Voronoi Diagrams , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  Jean-Daniel Boissonnat,et al.  A semidynamic construction of higher-order voronoi diagrams and its randomized analysis , 1993, Algorithmica.

[17]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[18]  Evanthia Papadopoulou Critical area computation for missing material defects in VLSI circuits , 2000, ISPD '00.

[19]  Joseph S. B. Mitchell,et al.  L1 shortest paths among polygonal obstacles in the plane , 1992, Algorithmica.

[20]  Franz Aurenhammer,et al.  A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1991, SCG '91.