Algebraic multigrid for stabilized finite element discretizations of the Navier?Stokes equations

Abstract An algebraic multigrid method for the solution of stabilized finite element discretizations of the Euler and Navier Stokes equations on generalized unstructured grids is described. The method is based on an elemental agglomeration multigrid strategy employing a semi-coarsening scheme designed to reduce grid anisotropy. The viscous terms are discretized in a consistent manner on coarse grids using an algebraic Galerkin coarse grid approximation in which higher-order grid transfer operators are constructed from the underlying triangulation. However, the combination of higher-order transfer operators and Galerkin rediscretization diminishes the stability of stabilized inviscid operators on coarse grids and a modification is proposed to alleviate this problem. A generalized line implicit relaxation scheme is also described where the lines are constructed to follow the direction of strongest coupling. Applications are demonstrated for convection–diffusion, Euler, and laminar Navier–Stokes. The results show that the convergence rate is largely unaffected by mesh size over a wide range of Reynolds (Peclet) numbers.

[1]  Achi Brandt,et al.  Distributed Relaxation Multigrid and Defect Correction Applied to the Compressible Navier-Stokes Equations , 1999 .

[2]  Timothy J. Barth,et al.  A Parallel Non-Overlapping Domain-Decomposition Algorithm for Compressible Fluid Flow Problems on Triangulated Domains , 1998 .

[3]  Antony Jameson,et al.  Accelerating three-dimensional navier-stokes calculations , 1997 .

[4]  Antony Jameson,et al.  Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact , 2001 .

[5]  Dimitri J. Mavriplis,et al.  AGGLOMERATION MULTIGRID FOR THE THREE-DIMENSIONAL EULER EQUATIONS , 1994 .

[6]  R. Swanson,et al.  Extending ideally converging multigrid methods to airfoil flows , 1999 .

[7]  S. Allmaras Analysis of semi-implicit preconditioners for multigrid solution of the 2-D compressible Navier-Stokes equations , 1995 .

[8]  S. R. Elias,et al.  AN ADAPTIVE AGGLOMERATION METHOD FOR ADDITIVE CORRECTION MULTIGRID , 1997 .

[9]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[10]  R. Bank,et al.  An algorithm for coarsening unstructured meshes , 1996 .

[11]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[12]  Junping Wang,et al.  Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing , 1992 .

[13]  Bram van Leer,et al.  Multigrid solution of the Euler equations with local preconditioning. , 1997 .

[14]  Tony F. Chan,et al.  Multilevel methods for elliptic problems on unstructured grids , 1997 .

[15]  Alain Dervieux,et al.  Unstructured volume‐agglomeration MG: Solution of the Poisson equation , 1994 .

[16]  Dimitri J. Mavriplis,et al.  MULTIGRID TECHNIQUES FOR UNSTRUCTURED MESHES , 1995 .

[17]  D. Mavriplis Three dimensional unstructured multigrid for the Euler equations , 1991 .

[18]  Joseph E. Pasciak,et al.  THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS , 1992 .

[19]  Tony F. Chan,et al.  Multilevel Algebraic Elliptic Solvers , 1999, HPCN Europe.

[20]  David E. Keyes,et al.  Application of Newton-Krylov methodology to a three-dimensional unstructured Euler code , 1995 .

[21]  D. A. Knoll,et al.  On Newton-Krylov Multigrid Methods for the Incompressible Navier-Stokes Equations , 2000 .

[22]  Q. Chang,et al.  On the Algebraic Multigrid Method , 1996 .

[23]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[24]  Arnold Reusken,et al.  Convergence analysis of a multigrid method for convection–diffusion equations , 2002, Numerische Mathematik.

[25]  Dimitri J. Mavriplis,et al.  Coarsening Strategies for Unstructured Multigrid Techniques with Application to Anisotropic Problems , 1995, SIAM J. Sci. Comput..

[26]  C. Hirsch,et al.  A multigrid method for the transonic full potential equation discretized with finite elements on an arbitrary body fitted mesh , 1982 .

[27]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[28]  R C Swanson,et al.  Textbook Multigrid Efficiency for the Steady Euler Equations , 1997 .

[29]  J. Peraire,et al.  Multigrid solution of the 3‐D compressible euler equations on unstructured tetrahedral grids , 1993 .

[30]  Antony Jameson,et al.  Numerical solution of the Euler equation for compressible inviscid fluids , 1985 .

[31]  Boris Diskin,et al.  Solving upwind-biased discretizations II: Multigrid solver using semicoarsening , 1999 .

[32]  Dimitri J. Mavriplis,et al.  Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows , 1998 .

[33]  Ignacio M. Llorente,et al.  Robust multigrid smoothers for three dimensional elliptic equations with strong anisotropies , 1998 .

[34]  S. Pirzadeh,et al.  Large-Scale Parallel Unstructured Mesh Computations for Three-Dimensional High-Lift Analysis , 1999 .

[35]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[36]  Achi Brandt,et al.  Textbook multigrid efficiency for the incompressible Navier-Stokes equations: High Reynolds number wakes and boundary layers , 1999 .

[37]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[38]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[39]  A MULTIGRID SOLVER FOR THE STEADY STATE NAVIER-STOKES EQUATIONS USING THE PRESSURE-POISSON FORMULATION , 1995 .

[40]  Dimitri J. Mavriplis Multigrid approaches to non-linear diffusion problems on unstructured meshes , 2001, Numer. Linear Algebra Appl..

[41]  Panayot S. Vassilevski,et al.  Element-Free AMGe: General Algorithms for Computing Interpolation Weights in AMG , 2001, SIAM J. Sci. Comput..

[42]  A. Jameson The Present Status , Challenges , and Future Developments in Computational Fluid Dynamics , 1995 .

[43]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[44]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[45]  Tony F. Chan,et al.  Detection of Strong Coupling in Algebraic Multigrid Solvers , 2000 .

[46]  David W. Zingg,et al.  AN EFFICIENT NEWTON-GMRES SOLVER FOR AERODYNAMIC COMPUTATIONS , 1997 .

[47]  Steven Allmaras,et al.  Multigrid for the 2-D compressible Navier-Stokes equations , 1999 .

[48]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[49]  Jinchao Xu,et al.  An agglomeration multigrid method for unstructured grids , 1998 .

[50]  Herman Deconinck,et al.  Adaptive unstructured mesh algorithms and SUPG finite element method for compressible high reynolds number flows , 1997 .

[51]  Arnold Reusken,et al.  On the convergence of basic iterative methods for convection-diffusion equations , 1999, Numer. Linear Algebra Appl..

[52]  Marian Nemec,et al.  Towards efficient aerodynamic shape optimization based on the Navier-Stokes equations , 2001 .

[53]  Chang Hsien Tai Acceleration techniques for explicit Euler codes , 1990 .

[54]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[55]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[56]  Dimitri J. Mavriplis,et al.  Large-scale parallel viscous flow computations using an unstructured multigrid algorithm , 1999 .

[57]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[58]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[59]  Enrico Bertolazzi,et al.  A triangle-based unstructured finite-volume method for chemically reactive hypersonic flows , 2001 .

[60]  Joseph E. Pasciak,et al.  Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity , 1992 .

[61]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[62]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[63]  David Sidilkover,et al.  A GENUINELY MULTIDIMENSIONAL UPWIND SCHEME AND EFFICIENT MULTIGRID SOLVER FOR THE COMPRESSIBLE EULER EQUATIONS , 1994 .

[64]  B. Stoufflet,et al.  Characteristic multigrid method application to solve the Euler equations with unstructured and unnested grids , 1993 .

[65]  Michael B. Giles,et al.  Preconditioning on stretched meshes , 1995 .

[66]  Jean-Antoine Désidéri,et al.  Numerical methods for the Euler equations of fluid dynamics , 1985 .

[67]  Shlomo Ta''asan CANONICAL-VARIABLES MULTIGRID METHOD FOR STEADY-STATE EULER EQUATIONS , 1994 .

[68]  Michael B. Giles,et al.  Preconditioned Multigrid Methods for Compressible Flow Calculations on Stretched Meshes , 1997 .

[69]  David L. Darmofal,et al.  The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm , 2001 .

[70]  An Accurate and Stable Multigrid Method for Convection-Diffusion Equations , 1995 .

[71]  Alain Dervieux,et al.  Unstructured multigridding by volume agglomeration: Current status , 1992 .

[72]  Shangyou Zhang,et al.  Optimal-order nonnested multigrid methods for solving finite element equations III: on degenerate meshes , 1995 .

[73]  Achi Brandt,et al.  Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD , 1998 .

[74]  A. Galeão,et al.  A consistent approximate upwind Petrov—Galerkin method for convection-dominated problems , 1988 .

[75]  Dietrich Braess Towards algebraic multigrid for elliptic problems of second order , 2005, Computing.

[76]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[77]  M. Raw,et al.  Robustness of coupled Algebraic Multigrid for the Navier-Stokes equations , 1996 .

[78]  Chang-Hsien Tai,et al.  Design of optimally smoothing multistage schemes for the Euler equations , 1992 .

[79]  N. Ron-Ho,et al.  A Multiple-Grid Scheme for Solving the Euler Equations , 1982 .

[80]  Marcelo H. Kobayashi,et al.  A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions , 2001 .

[81]  H. Nishikawa,et al.  Optimal multigrid convergence by elliptic/hyperbolic splitting , 2002 .

[82]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[83]  V. Venkatakrishnan,et al.  A PERSPECTIVE ON UNSTRUCTURED GRID FLOW SOLVERS , 1995 .

[84]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[85]  G. Raithby,et al.  A multigrid method based on the additive correction strategy , 1986 .

[86]  David A. Caughey,et al.  Application of the Multigrid Method to Calculations of Transonic Potential Flow about Wing-Fuselage Combinations , 1982 .

[87]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[88]  K. Jansen A stabilized finite element method for computing turbulence , 1999 .

[89]  R. Webster An algebraic multigrid solver for Navier‐Stokes problems , 1994 .

[90]  A. Jameson Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .

[91]  K. Jansen Unstructured-grid large-eddy simulation of flow over an airfoil , 1994 .

[92]  David Sidilkover,et al.  Some Approaches Towards Constructing Optimally Efficient Multigrid Solvers for the Inviscid Flow Equations , 1997 .

[93]  Dimitri J. Mavriplis,et al.  AIAA 99 – 0537 LARGE-SCALE PARALLEL UNSTRUCTURED MESH COMPUTATIONS FOR 3 D HIGH-LIFT ANALYSIS , 1999 .

[94]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[95]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .

[96]  Ruben S. M Llorente,et al.  Robust multigrid algorithms for the incompressible Navier-Stokes equations , 2000 .

[97]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[98]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[99]  A. Brandt Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .

[100]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[101]  D. Mavriplis Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes , 1997 .

[102]  William J. Rider,et al.  A Multigrid Preconditioned Newton-Krylov Method , 1999, SIAM J. Sci. Comput..

[103]  Achi Brandt,et al.  Accelerated Multigrid Convergence and High-Reynolds Recirculating Flows , 1993, SIAM J. Sci. Comput..

[104]  David Sidilkover,et al.  Multigrid Relaxation of a Factorizable, Conservative Discretization of the Compressible Flow Equations , 2000 .

[105]  A. Brandt Multi-Level Adaptive Techniques (MLAT) for Partial Differential Equations: Ideas and Software , 1977 .

[106]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[107]  P. Wesseling,et al.  Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates , 1993 .

[108]  D. Jespersen A multigrid method for the Euler equations , 1983 .

[109]  W. K. Anderson,et al.  Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .

[110]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[111]  Tony F. Chan,et al.  An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..