Social bookmark weighting for search and recommendation

Social bookmarking enables knowledge sharing and efficient discovery on the web, where users can collaborate together by tagging documents of interests. A lot of attention was given lately for utilizing social bookmarking data to enhance traditional IR tasks. Yet, much less attention was given to the problem of estimating the effectiveness of an individual bookmark for the specific tasks. In this work, we propose a novel framework for social bookmark weighting which allows us to estimate the effectiveness of each of the bookmarks individually for several IR tasks. We show that by weighting bookmarks according to their estimated quality, we can significantly improve social search effectiveness. We further demonstrate that using the same framework, we can derive solutions to several recommendation tasks such as tag recommendation, user recommendation, and document recommendation. Empirical evaluation on real data gathered from two large bookmarking systems demonstrates the effectiveness of the new social bookmark weighting framework.

[1]  Panagiotis Symeonidis,et al.  Tag recommendations based on tensor dimensionality reduction , 2008, RecSys '08.

[2]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[3]  Georgia Koutrika,et al.  Combating spam in tagging systems , 2007, AIRWeb '07.

[4]  Marcus Fontoura,et al.  Using annotations in enterprise search , 2006, WWW '06.

[5]  M. de Rijke,et al.  Formal models for expert finding in enterprise corpora , 2006, SIGIR.

[6]  Gerhard Weikum,et al.  Efficient top-k querying over social-tagging networks , 2008, SIGIR '08.

[7]  Raphael Yuster,et al.  Fast sparse matrix multiplication , 2004, TALG.

[8]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[9]  Gilad Mishne,et al.  AutoTag: a collaborative approach to automated tag assignment for weblog posts , 2006, WWW '06.

[10]  Cong Yu,et al.  From del.icio.us to x.qui.site: recommendations in social tagging sites , 2008, SIGMOD Conference.

[11]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[12]  David R. Millen,et al.  Dogear: Social bookmarking in the enterprise , 2006, CHI.

[13]  Siegfried Handschuh,et al.  P-TAG: large scale automatic generation of personalized annotation tags for the web , 2007, WWW '07.

[14]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[15]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[16]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[17]  Christopher H. Brooks,et al.  Improved annotation of the blogosphere via autotagging and hierarchical clustering , 2006, WWW '06.

[18]  Shankara B. Subramanya,et al.  Socialtagger - collaborative tagging for blogs in the long tail , 2008, SSM '08.

[19]  Hongyuan Zha,et al.  Exploring social annotations for information retrieval , 2008, WWW.

[20]  Elad Yom-Tov,et al.  Who tags the tags?: a framework for bookmark weighting , 2009, CIKM.

[21]  Satoshi Nakamura,et al.  Can social bookmarking enhance search in the web? , 2007, JCDL '07.

[22]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[23]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[24]  John Riedl,et al.  tagging, communities, vocabulary, evolution , 2006, CSCW '06.

[25]  Mor Naaman,et al.  ZoneTag's Collaborative Tag Suggestions: What is This Person Doing in My Phone? , 2008, IEEE MultiMedia.

[26]  Garcia-MolinaHector,et al.  Combating spam in tagging systems , 2008 .

[27]  Man Lung Yiu,et al.  Group-by skyline query processing in relational engines , 2009, CIKM.

[28]  Wolfgang Nejdl,et al.  Can all tags be used for search? , 2008, CIKM '08.

[29]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[30]  Jianchang Mao,et al.  Towards the Semantic Web: Collaborative Tag Suggestions , 2006 .

[31]  Craig MacDonald,et al.  Voting for candidates: adapting data fusion techniques for an expert search task , 2006, CIKM '06.

[32]  Licia Capra,et al.  Social ranking: uncovering relevant content using tag-based recommender systems , 2008, RecSys '08.

[33]  Andreas Hotho,et al.  The anti-social tagger: detecting spam in social bookmarking systems , 2008, AIRWeb '08.

[34]  Aya Soffer,et al.  Social search and discovery using a unified approach , 2009, HT '09.

[35]  Einat Amitay einat Finding People and Documents, Using Web 2.0 Data , 2008 .

[36]  John Riedl,et al.  Tagommenders: connecting users to items through tags , 2009, WWW '09.

[37]  Mark S. Ackerman,et al.  Searching for expertise in social networks: a simulation of potential strategies , 2005, GROUP.

[38]  C. Bauckhage,et al.  Analyzing Social Bookmarking Systems : A del . icio . us Cookbook , 2008 .

[39]  Ajita John,et al.  Collaborative Tagging and Expertise in the Enterprise , 2006 .

[40]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.