A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case

Abstract In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic–elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic–elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.

[1]  Georg Stadler,et al.  A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media , 2010, J. Comput. Phys..

[2]  A. Malehmir,et al.  High-resolution near-surface velocity model building using full-waveform inversion-a case study from southwest Sweden , 2014 .

[3]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[4]  Maurice A. Biot,et al.  Generalized Theory of Acoustic Propagation in Porous Dissipative Media , 1962 .

[5]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[6]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[7]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[8]  Michael Dumbser,et al.  Discontinuous Galerkin methods for wave propagation in poroelastic media , 2008 .

[9]  J. Kaipio,et al.  Groundwater responses to the recent Canterbury earthquakes: a comparison , 2013 .

[10]  Charbel Farhat,et al.  A space–time discontinuous Galerkin method for the solution of the wave equation in the time domain , 2009 .

[11]  Tiangang Cui,et al.  Pragmatic approach to calibrating distributed parameter groundwater models from pumping test data using adaptive delayed acceptance MCMC , 2016 .

[12]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[13]  Juan E. Santos,et al.  Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks , 2009 .

[14]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Multidimensional Systems , 2002 .

[15]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[16]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[17]  Arne Taube,et al.  A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations , 2009 .

[18]  Jan S. Hesthaven,et al.  Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..

[19]  Refractor Uncertainty , 2001, The Lancet.

[20]  José M. Carcione,et al.  Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media , 2011 .

[21]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[22]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[23]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[24]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[25]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[26]  E. Somersalo,et al.  Inverse problems with structural prior information , 1999 .

[27]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[28]  Olivier Dazel,et al.  A discontinuous Galerkin method with plane waves for sound‐absorbing materials , 2015 .

[29]  N. Ward On the mechanism of earthquake induced groundwater flow , 2015 .

[30]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[31]  José M. Carcione,et al.  SOME ASPECTS OF THE PHYSICS AND NUMERICAL MODELING OF BIOT COMPRESSIONAL WAVES , 1995 .

[32]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[33]  Randall J. LeVeque,et al.  High-Resolution Finite Volume Modeling of Wave Propagation in Orthotropic Poroelastic Media , 2012, SIAM J. Sci. Comput..

[34]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[35]  U. Tinivella,et al.  3D seismic data for shallow aquifers characterisation , 2009 .

[36]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[37]  J. D. L. Puente,et al.  Seismic Wave Simulation for Complex Rheologies on Unstructured Meshes , 2008 .

[38]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[39]  Michael Dumbser,et al.  A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids , 2008 .

[40]  Grady I. Lemoine,et al.  Finite Volume Modeling of Poroelastic-Fluid Wave Propagation with Mapped Grids , 2013, SIAM J. Sci. Comput..

[41]  Jeroen Tromp,et al.  Spectral-element simulations of wave propagation in porous media: Finite-frequency sensitivity kernels based upon adjoint methods , 2008 .

[42]  Peter Monk,et al.  A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems in Inhomogeneous Media , 2005, J. Sci. Comput..

[43]  J. Bear Hydraulics of Groundwater , 1979 .

[44]  Herbert Egger,et al.  A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell's Equations , 2014, SIAM J. Sci. Comput..

[45]  Grady I. Lemoine Three-Dimensional Mapped-Grid Finite Volume Modeling of Poroelastic-Fluid Wave Propagation , 2016, SIAM J. Sci. Comput..

[46]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[47]  Mark Ainsworth,et al.  Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..

[48]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[49]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[50]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[51]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[52]  Nicholas Dudley,et al.  Uncertainty, decision and control: Issues and solutions , 2014 .

[53]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[54]  T. Huttunen,et al.  A non-uniform basis order for the discontinuous Galerkin method of the acoustic and elastic wave equations , 2011 .

[55]  M. Close,et al.  Complementary use of tracer and pumping tests to characterize a heterogeneous channelized aquifer system in New Zealand , 2008 .

[56]  J. Kaipio,et al.  Estimation of aquifer dimensions from passive seismic signals in the presence of material and source uncertainties , 2015 .

[57]  Tiangang Cui,et al.  Characterization of Parameters for a Spatially Heterogenous Aquifer from Pumping Test Data , 2014 .

[58]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[59]  Estimation of aquifer dimensions from passive seismic signals with approximate wave propagation models , 2014 .

[60]  Julien Diaz,et al.  Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part II: the 3D Case , 2008, 0807.3864.

[61]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[62]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[63]  Daniele Cavaglieri,et al.  Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems , 2015, J. Comput. Phys..

[64]  J. Hesthaven,et al.  Multiscale modelling of sound propagation through the lung parenchyma , 2014 .

[65]  Timo Lähivaara,et al.  A non-uniform basis order for the discontinuous Galerkin method of the 3D dissipative wave equation with perfectly matched layer , 2010, J. Comput. Phys..

[66]  J. Carcione,et al.  Computational poroelasticity — A review , 2010 .