Recent developments in nonregular fractional factorial designs

Nonregular fractional factorial designs such as Plackett-Burman designs and other orthogonal arrays are widely used in various screening experiments for their run size economy and flexibility. The traditional analysis focuses on main e�ffects only. Hamada and Wu (1992) went beyond the traditional approach and proposed an analysis strategy to demonstrate that some interactions could be entertained and estimated beyond a few significant main effects. Their groundbreaking work stimulated much of the recent developments in design criterion creation, construction and analysis of nonregular designs. This paper reviews important developments in optimality criteria and comparison, including projection properties, generalized resolution, various generalized minimum aberration criteria, optimality results, construction methods and analysis strategies for nonregular designs.

[1]  Randy R. Sitter,et al.  Constructing non-regular robust parameter designs , 2006 .

[2]  H. Qin,et al.  Uniformity pattern and related criteria for two-level factorials , 2005 .

[3]  Kai-Tai Fang,et al.  A connection between uniformity and aberration in regular fractions of two-level factorials , 2000 .

[4]  Boxin Tang,et al.  Theory of J-characteristics for fractional factorial designs and projection justification of minimum G2-aberration , 2001 .

[5]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[6]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[7]  Dennis K. J. Lin,et al.  FORWARD SELECTION ERROR CONTROL IN THE ANALYSIS OF SUPERSATURATED DESIGNS , 1998 .

[8]  Boxin Tang,et al.  GENERALIZED MINIMUM ABERRATION AND DESIGN EFFICIENCY FOR NONREGULAR FRACTIONAL FACTORIAL DESIGNS , 2002 .

[9]  Kashinath Chatterjee,et al.  Connection between uniformity and minimum moment aberration , 2009 .

[10]  Boxin Tang,et al.  Orthogonal arrays robust to nonnegligible two-factor interactions , 2006 .

[11]  C. Koukouvinos,et al.  18-run nonisomorphic three level orthogonal arrays , 2007 .

[12]  Lih-Yuan Deng,et al.  GENERALIZED RESOLUTION AND MINIMUM ABERRATION CRITERIA FOR PLACKETT-BURMAN AND OTHER NONREGULAR FACTORIAL DESIGNS , 1999 .

[13]  Angela M. Dean,et al.  A survey and evaluation of methods for determination of combinatorial equivalence of factorial designs , 2008 .

[14]  Changbao Wu,et al.  Fractional Factorial Designs , 2022 .

[15]  S. Agaian Hadamard Matrices and Their Applications , 1985 .

[16]  Ching-Shui Cheng,et al.  Hidden projection properties of some nonregular fractional factorial designs and their applications. , 2003 .

[17]  Changbao Wu,et al.  Construction of supersaturated designs through partially aliased interactions , 1993 .

[18]  C. F. J. Wu,et al.  Some identities on $q\sp {n-m}$ designs with application to minimum aberration designs , 1997 .

[19]  H. Qin,et al.  Discrete discrepancy in factorial designs , 2004 .

[20]  Kenny Q. Ye A NOTE ON REGULAR FRACTIONAL FACTORIAL DESIGNS , 2004 .

[21]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[22]  R. D. Meyer,et al.  Finding the Active Factors in Fractionated Screening Experiments , 1993 .

[23]  Neil A. Butler,et al.  Nonregular two-level designs of resolution IV or more containing clear two-factor interactions , 2007 .

[24]  W. G. Hunter,et al.  Minimum Aberration 2k-p Designs , 1980 .

[25]  K. Horadam Hadamard Matrices and Their Applications , 2006 .

[26]  Mingyao Ai,et al.  Optimal criteria and equivalence for nonregular fractional factorial designs , 2005 .

[27]  Kenny Q. Ye Indicator function and its application in two-level factorial designs , 2003 .

[28]  J. C.F.,et al.  CONSTRUCTION OF OPTIMAL MULTI-LEVEL SUPERSATURATED DESIGNS , 2006 .

[29]  Jiahua Chen,et al.  A catalogue of two-level and three-level fractional factorial designs with small runs , 1993 .

[30]  Kenny Q. Ye,et al.  Optimal Foldover Plans for Two-Level Nonregular Orthogonal Designs , 2003, Technometrics.

[31]  Lih-Yuan Deng,et al.  Design Selection and Classification for Hadamard Matrices Using Generalized Minimum Aberration Criteria , 2002, Technometrics.

[32]  Hongquan Xu Minimum moment aberration for nonregular designs and supersaturated designs , 2001 .

[33]  M. Behbahani On orthogonal matrices , 2004 .

[34]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[35]  Hongquan Xu,et al.  Quarter-Fraction Factorial Designs Constructed via Quaternary Codes , 2008, 0908.3438.

[36]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[37]  Hongquan Xu Some Nonregular Designs From the Nordstrom and Robinson Code and Their Statistical Properties , 2005 .

[38]  Dennis K. J. Lin,et al.  Projection properties of Plackett and Burman designs , 1992 .

[39]  J. S. Hunter,et al.  The 2 k—p Fractional Factorial Designs Part I , 2000, Technometrics.

[40]  W. G. Hunter,et al.  Minimum Aberration 2 k–p Designs , 1980 .

[41]  Aloke Dey Projection properties of some orthogonal arrays , 2005 .

[42]  Frederick Kin Hing Phoa,et al.  Analysis of Supersaturated Designs via Dantzig Selector , 2009 .

[43]  Neil A. Butler Generalised minimum aberration construction results for symmetrical orthogonal arrays , 2005 .

[44]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[45]  Kazue Sawade,et al.  A Hadamard matrix of order 268 , 1985, Graphs Comb..

[46]  George E. P. Box,et al.  Follow-up designs to resolve confounding in multifactor experiments , 1996 .

[47]  Neil A. Butler,et al.  Minimum aberration construction results for nonregular two‐level fractional factorial designs , 2003 .

[48]  Randy R. Sitter,et al.  Nonregular Designs With Desirable Projection Properties , 2007, Technometrics.

[49]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[50]  Hongquan Xu,et al.  Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes , 2007, Technometrics.

[51]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[52]  D. Bulutoglu,et al.  Classification of Orthogonal Arrays by Integer Programming , 2008 .

[53]  Yi Lin,et al.  An Efficient Variable Selection Approach for Analyzing Designed Experiments , 2007, Technometrics.

[54]  Hongquan Xu,et al.  Blocked Regular Fractional Factorial Designs With Minimum Aberration , 2005, math/0702702.

[55]  Ching-Shui Cheng,et al.  Some Projection Properties of Orthogonal Arrays , 1995 .

[56]  Ching-Shui Cheng,et al.  Projection Properties of Factorial Designs for Factor Screening , 2006 .

[57]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[58]  Hongquan Xu,et al.  A catalogue of three-level regular fractional factorial designs , 2005 .

[59]  A. S. Hedayat,et al.  2n-l designs with weak minimum aberration , 1996 .

[60]  D. Steinberg,et al.  Technometrics , 2008 .

[61]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[62]  Steven G. Gilmour,et al.  Some new three-level orthogonal main effects plans robust to model uncertainty , 2004 .

[63]  C. Radhakrishna Rao Some Combinatorial Problems of Arrays and Applications to Design of Experiments††Paper read at the International Symposium on Combinatorial Mathematics and its Applications, Fort Collins, Colorado, September 1971. , 1973 .

[64]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[65]  Runchu Zhang,et al.  Theory of optimal blocking of nonregular factorial designs , 2004 .

[66]  Mingyao Ai,et al.  Generalized Wordtype Pattern for Nonregular Factorial Designs with Multiple Groups of Factors , 2006 .

[67]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[68]  David M. Steinberg,et al.  Minimum aberration and model robustness for two‐level fractional factorial designs , 1999 .

[69]  Boxin Tang,et al.  Complete enumeration of two-Level orthogonal arrays of strength d with d + 2 constraints , 2007, 0708.1908.

[70]  Boxin Tang,et al.  Characterization of minimum aberration $2\sp {n-k}$ designs in terms of their complementary designs , 1996 .

[71]  Mingyao Ai,et al.  Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs , 2004 .

[72]  H. Chipman,et al.  A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing , 1997 .

[73]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[74]  Lih-Yuan Deng,et al.  Moment Aberration Projection for Nonregular Fractional Factorial Designs , 2005, Technometrics.

[75]  Steven G. Gilmour,et al.  Factor Screening via Supersaturated Designs , 2006 .

[76]  J. S. Hunter,et al.  The 2 k — p Fractional Factorial Designs , 1961 .

[77]  William Li,et al.  Screening designs for model selection , 2006 .

[78]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[79]  Runze Li,et al.  Majorization framework for balanced lattice designs , 2005, math/0603082.

[80]  Aijun Zhang,et al.  An effective algorithm for generation of factorial designs with generalized minimum aberration , 2007, J. Complex..

[81]  A. Dean,et al.  Projection properties of certain three level orthogonal arrays , 2005 .

[82]  Kenny Q. Ye,et al.  Geometric isomorphism and minimum aberration for factorial designs with quantitative factors , 2004, math/0503678.

[83]  F. J. Hickernell,et al.  Uniform designs limit aliasing , 2002 .

[84]  Fred J. Hickernell,et al.  Connections Among Different Criteria for Asymmetrical Fractional Factorial Designs , 2006 .

[85]  Ching-Shui Cheng,et al.  Orthogonal Arrays with Variable Numbers of Symbols , 1980 .

[86]  Hongquan Xu,et al.  An Algorithm for Constructing Orthogonal and Nearly-Orthogonal Arrays With Mixed Levels and Small Runs , 2002, Technometrics.

[87]  Kai-Tai Fang,et al.  A note on generalized aberration in factorial designs , 2001 .

[88]  Jacqueline K. Telford,et al.  A Brief Introduction to Design of Experiments , 2007 .

[89]  Dennis K. J. Lin,et al.  A new class of supersaturated designs , 1993 .

[90]  Ching-Shui Cheng,et al.  Some hidden projection properties of orthogonal arrays with strength three , 1998 .

[91]  Lih-Yuan Deng,et al.  Construction of generalized minimum aberration designs of 3, 4 and 5 factors , 2003 .

[92]  Neil A. Butler,et al.  Minimum G2-aberration properties of two-level foldover designs , 2004 .

[93]  Hongquan Xu,et al.  Minimum aberration blocking schemes for two- and three-level fractional factorial designs , 2006 .

[94]  Robert W. Mee,et al.  SECOND ORDER SATURATED ORTHOGONAL ARRAYS OF STRENGTH THREE , 2008 .

[95]  H. Qin,et al.  A note on the connection between uniformity and generalized minimum aberration , 2007 .

[96]  Neil A. Butler,et al.  Results for two-level fractional factorial designs of resolution IV or more , 2007 .

[97]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[98]  C. F. Jeff Wu,et al.  Optimal Projective Three-Level Designs for Factor Screening and Interaction Detection , 2004, Technometrics.

[99]  Changbao Wu,et al.  FACTOR SCREENING AND RESPONSE SURFACE EXPLORATION , 2001 .

[100]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[101]  Vladimir D. Tonchev,et al.  Classification of affine resolvable 2-(27, 9, 4) designs , 1996 .

[102]  Robert W. Mee Efficient Two-Level Designs for Estimating All Main Effects and Two-Factor Interactions , 2004 .

[103]  Kenny Q. Ye,et al.  Blocked Nonregular Two-Level Factorial Designs , 2004, Technometrics.

[104]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[105]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[106]  Lih-Yuan Deng,et al.  Minimum $G_2$-aberration for nonregular fractional factorial designs , 1999 .

[107]  R. Daniel Meyer,et al.  An Analysis for Unreplicated Fractional Factorials , 1986 .

[108]  Ching-Shui Cheng,et al.  Theory of optimal blocking of $2^{n-m}$ designs , 1999 .

[109]  A. Owen Controlling correlations in latin hypercube samples , 1994 .

[110]  Rahul Mukerjee,et al.  A Modern Theory Of Factorial Designs , 2006 .

[111]  Changbao Wu,et al.  Analysis of Designed Experiments with Complex Aliasing , 1992 .

[112]  Don X. Sun,et al.  An Algorithm for Sequentially Constructing Non-Isomorphic Orthogonal Designs and its Applications , 2002 .

[113]  Ching-Shui Cheng,et al.  A Complementary Design Theory for Doubling , 2008, 0803.2118.

[114]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[115]  G. Box,et al.  Projective properties of certain orthogonal arrays , 1996 .

[116]  Steven G. Gilmour,et al.  Projective three-level main effects designs robust to model uncertainty , 2000 .

[117]  R. Mukerjee,et al.  DESIGN EFFICIENCY UNDER MODEL UNCERTAINTY FOR NONREGULAR FRACTIONS OF GENERAL FACTORIALS , 2004 .

[118]  Lih-Yuan Deng,et al.  Design catalog based on minimum G-aberration , 2004 .