Complexity of E0L Structural Equivalence

We show that the EOL structural equivalence problem is logspace hard for deterministic exponential time. Also, we show that this question can be solved in linear space by a synchronized alternating Turing machine, and thus establish an exponential space upper bound for its complexity. The equivalence of finite tree automata is shown to be logspace reducible to context-free structural equivalence. The converse reduction is well known and thus context-free structural equivalence is complete for deterministic exponential time.

[1]  Robert McNaughton,et al.  Parenthesis Grammars , 1967, JACM.

[2]  Anna Slobodová,et al.  On the Power of Synchronization in Parallel Computations , 1989, MFCS.

[3]  Klaus-Jörn Lange,et al.  The Complexity of the Emptiness Problem for EOL Systems , 1992 .

[4]  Jan van Leeuwen,et al.  The Tape-Complexity of Context-Independent Developmental Languages , 1975, J. Comput. Syst. Sci..

[5]  james w.thatcher,et al.  tree automata: an informal survey , 1974 .

[6]  Stephen H. Unger,et al.  Structural Equivalence of Context-Free Grammars , 1968, J. Comput. Syst. Sci..

[7]  Anna Slobodová,et al.  Deterministic versus Nondeterministic Space in Terms of Synchronized Alternating Machines , 1994, Theor. Comput. Sci..

[8]  Alfred V. Aho,et al.  Currents In The Theory Of Computing , 1973 .

[9]  Sven Skyum,et al.  Complexity of Some Problems Concerning L Systems , 1977, ICALP.

[10]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[11]  Helmut Seidl Deciding Equivalence of Finite Tree Automata , 1990, SIAM J. Comput..

[12]  Derick Wood,et al.  Structural Equivalence and ETOL grammars , 1993 .

[13]  Jan van Leeuwen,et al.  The Membership Question for ET0L-Languages is Polynomially Complete , 1975, Inf. Process. Lett..

[14]  Gabriel Istrate The Strong Equivalence of ETOL Grammars , 1993, Developments in Language Theory.

[15]  Valtteri Niemi A normal form for structurally equivalent E0L grammars , 1992 .

[16]  Jirí Wiedermann On the Power of Synchronization , 1989, J. Inf. Process. Cybern..

[17]  Derick Wood,et al.  Defining families of trees with E0L grammars , 1991, Discret. Appl. Math..

[18]  Derick Wood,et al.  Structural Equivalences and ET0L Grammars (Extended Abstract) , 1993, FCT.

[19]  Derick Wood,et al.  Theory of computation , 1986 .

[20]  Sheng Yu,et al.  Decidability of Structural Equivalence of E0L Grammars , 1991, Theor. Comput. Sci..

[21]  Derick Wood,et al.  Structural Equivalence and ET0L Grammars , 1996, Theor. Comput. Sci..

[22]  Derick Wood,et al.  Simplifications of E0L Grammars , 1992 .