An adaptive GSM-CFD solver and its application to shock-wave boundary layer interaction

Purpose – The first purpose of this paper is to design more accurate, efficient and robust gradient smoothing methods (GSMs) for spatial derivative approximations for computational fluid dynamics (CFD) application. The second purpose is to design an adaptive GSM-CFD solver for the compressible turbulent flows, with special focus on the shock-wave boundary layer interactions. Design/methodology/approach – A new integration scheme is proposed for the node-associated GSM to improve the accuracy and robustness of the previous versions. A matrix-based algorithm and corresponding data structures are devised to improve the computational efficiency of GSM. The GSM-CFD solver is coupled with a mixed solution-based adaptive mesher to form a functional adaptive GSM-CFD solver. Findings – The improved GSMs are insensitive to mesh qualities, and can achieve high accuracy on all kinds of hybrid meshes. The adaptive GSM-CFD solver can better capture the shock wave. Originality/value – The matrix-based GSM and its corres...

[1]  Wayne A. Smith,et al.  Implicit Solution of Preconditioned Navier- Stokes Equations Using Algebraic Multigrid , 1999 .

[2]  Jianyao Yao,et al.  A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics , 2014 .

[3]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[4]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[5]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications, Second Edition , 2001 .

[6]  J. Dussauge,et al.  Shock wave boundary layer interaction , 2009 .

[7]  Guirong Liu,et al.  A novel linearly-weighted gradient smoothing method (LWGSM) in the simulation of fluid dynamics problem , 2011 .

[8]  Xiaoming Zheng,et al.  Adaptive unstructured volume remeshing - I: The method , 2005 .

[9]  N. Chokani,et al.  Quiet Tunnel Experiments of Shockwave/Turbulent Boundary Layer Interaction , 2006 .

[10]  A. F. Messiter,et al.  Analysis of Two-Dimensional Interactions Between Shock Waves and Boundary Layers , 1980 .

[11]  Rainald Löhner,et al.  Adaptive remeshing for transient problems , 1989 .

[12]  D. Knight,et al.  Advances in CFD prediction of shock wave turbulent boundary layer interactions , 2003 .

[13]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[14]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[15]  Gui-Rong Liu,et al.  A gradient smoothing method (GSM) for fluid dynamics problems , 2008 .

[16]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[17]  Gui-Rong Liu,et al.  An adaptive gradient smoothing method (GSM) for fluid dynamics problems , 2009 .

[18]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[19]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[20]  G. Y. Li,et al.  A gradient smoothing method (GSM) with directional correction for solid mechanics problems , 2007 .

[21]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[22]  Holger Babinsky,et al.  Shock Wave-Boundary-Layer Interactions , 2014 .

[23]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[24]  Guirong Liu,et al.  A moving-mesh gradient smoothing method for compressible CFD problems , 2013 .

[25]  A. Panaras,et al.  Review of the physics of swept-shock/boundary layer interactions , 1996 .

[26]  Eric Li,et al.  Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM) , 2012 .

[27]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[28]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[29]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[30]  David S. Dolling,et al.  Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? , 2001 .