Non-linear optical response of single carrier 2-D anharmonic quantum dots

[1]  S. Bhattacharyya,et al.  A linear variational route to the polarizability of 2-D artificial atoms: effects of anharmonicity in the confinement potential , 2004 .

[2]  C. Hamaguchi,et al.  ELECTRONIC STRUCTURES IN CIRCULAR, ELLIPTIC, AND TRIANGULAR QUANTUM DOTS , 1997 .

[3]  R. March,et al.  Fundamentals of ion trap mass spectrometry , 1995 .

[4]  Feng,et al.  Magnetoconductance of a nanoscale antidot. , 1994, Physical review. B, Condensed matter.

[5]  E. P. Concannon Hyperpolarizability of Interacting Atoms , 1994 .

[6]  P. Dutta,et al.  On exact calculation of response properties of oscillators in static electric field: A Fourier grid Hamiltonian approach. I. One-dimensional systems , 1994 .

[7]  D. Majumdar,et al.  Modeling hyperpolarizabilities of some TICT molecules and their analogs , 1993 .

[8]  G. Ashwell,et al.  Improved second-harmonic generation from Langmuir–Blodgett films of hemicyanine dyes , 1992, Nature.

[9]  D. Beratan,et al.  Approaches for Optimizing the First Electronic Hyperpolarizability of Conjugated Organic Molecules , 1991, Science.

[10]  David J. Williams,et al.  Introduction to Nonlinear Optical Effects in Molecules and Polymers , 1991 .

[11]  James J. P. Stewart,et al.  Reply to “Comments on a comparison of AM1 with the recently developed PM3 method” , 1990 .

[12]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[13]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[14]  C. Darwin The Diamagnetism of the Free Electron , 1931, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  V. Fock Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld , 1928 .