Wear-resistant polytetrafluoroethylene via electron irradiation

The sliding wear and friction behavior of irradiation-modified PTFE (by 10 MeV electrons in ambient air) against polished stainless steel is studied. Steady-state wear rate is shown to decrease monotonically by more than these orders of magnitude as the dose of the irradiation is increased from 0 to 30 Mrad. Friction initially increases with increasing dose, reaching a maximum value at 5 Mrad, then decreases with subsequent increases in dose, attaining a value similar to that of unirradiated PTFE at 30 Mrad. Hardness monotonically increases with increasing dose; however, irradiated PTFE was not found to abrasively damage the steel countersurface as many wear-resistant particle-filled PTFE composites do. Wear reduction is accomplished as debris production transforms from that of numerous large plate-like debris for unirradiated PTFE to that of very fine debris for irradiated PTFE.