Global stabilisation of multiple integrators via saturated controls

The global stabilisation problem for an nth-order integrator system with saturated input is considered. A new class of nested-type nonlinear feedback law with new and useful characteristics is proposed. First, this approach allows the designer to pick some parameters that facilitate the placement of the closed-loop pole set consisting of pairs of conjugate complex numbers having negative real parts when none of the saturation elements in the control laws is saturated. Only real numbers are allowed in the other existing results. Second, there are more free parameters in this class of nonlinear feedback laws that can be used to improve the performance further. Simulations confirm the convergence of the closed-loop system with other existing techniques.

[1]  D. Bernstein,et al.  A chronological bibliography on saturating actuators , 1995 .

[2]  Dennis S. Bernstein,et al.  Naive control of the double integrator , 2001 .

[3]  Nicolas Marchand,et al.  Global stabilization of multiple integrators with bounded controls , 2005, Autom..

[4]  Zongli Lin,et al.  Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks , 1995 .

[5]  H. Sussmann,et al.  On the stabilizability of multiple integrators by means of bounded feedback controls , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[6]  Suresh K. Kannan,et al.  Nested saturation with guaranteed real poles , 2003, Proceedings of the 2003 American Control Conference, 2003..

[7]  Lorenzo Marconi,et al.  Robust stabilization via saturated feedback , 2005, IEEE Transactions on Automatic Control.

[8]  A. Teel Global stabilization and restricted tracking for multiple integrators with bounded controls , 1992 .

[9]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[10]  Andrew R. Teel,et al.  Control of linear systems with saturating actuators , 1996 .

[11]  Ali Saberi,et al.  Semiglobal stabilization of linear discrete-time systems subject to input saturation, via linear feedback-an ARE-based approach , 1996, IEEE Trans. Autom. Control..

[12]  S. M. Krishnan,et al.  Stabilization of discrete-time multi-integral systems with input constraint , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[13]  R. Lozano,et al.  Stabilization of a chain of integrators with nonlinear perturbations: application to the inverted pendulum , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  Eduardo Sontag,et al.  A general result on the stabilization of linear systems using bounded controls , 1994, IEEE Trans. Autom. Control..

[15]  Nicolas Marchand Further results on global stabilization for multiple integrators with bounded controls , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Alessandro Astolfi,et al.  Nonlinear control of feedforward systems with bounded signals , 2004, IEEE Transactions on Automatic Control.

[17]  Alberto Isidori,et al.  On the output regulation for linear systems in the presence of input saturation , 2001, IEEE Trans. Autom. Control..

[18]  Eric N. Johnson,et al.  Adaptive Control with a Nested Saturation Reference Model , 2003 .

[19]  R. Suárez,et al.  Linear systems with bounded inputs : global stabilization with eigenvalue placement , 1997 .

[20]  Eduardo Sontag,et al.  On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation , 1996 .