Supporting evolution and maintenance of Android apps

In recent years, the market of mobile software applications (apps) has maintained an impressive upward trajectory. As of today, the market for such devices features over 850K+ apps for Android, and 19 versions of the Android API have been released in 4 years. There is evidence that Android apps are highly dependent on the underlying APIs, and APIs instability (change proneness) and fault-proneness are a threat to the success of those apps. Therefore, the goal of this research is to create an approach that helps developers of Android apps to be better prepared for Android platform updates as well as the updates from third-party libraries that can potentially (and inadvertently) impact their apps with breaking changes and bugs. Thus, we hypothesize that the proposed approach will help developers not only deal with platform and library updates opportunely, but also keep (and increase) the user base by avoiding many of these potential API ”update” bugs.

[1]  Atif M. Memon,et al.  An Observe-Model-Exercise* Paradigm to Test Event-Driven Systems with Undetermined Input Spaces , 2014, IEEE Transactions on Software Engineering.

[2]  Gabriele Bavota,et al.  Detecting bad smells in source code using change history information , 2013, 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[3]  Atanas Rountev,et al.  Static Reference Analysis for GUI Objects in Android Software , 2014, CGO '14.

[4]  Suman Nath,et al.  PUMA: programmable UI-automation for large-scale dynamic analysis of mobile apps , 2014, MobiSys.

[5]  Abram Hindle Green mining: A methodology of relating software change to power consumption , 2012, 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).

[6]  Collin Mulliner,et al.  Android Hacker's Handbook , 2014 .

[7]  Fred P. Brooks,et al.  The Mythical Man-Month , 1975, Reliable Software.

[8]  Alireza Sadeghi,et al.  Analysis of Android Inter-App Security Vulnerabilities Using COVERT , 2015, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

[9]  Jun Yan,et al.  Characterizing and detecting resource leaks in Android applications , 2013, 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[10]  Hongseok Yang,et al.  Automated concolic testing of smartphone apps , 2012, SIGSOFT FSE.

[11]  Sam Malek,et al.  EvoDroid: segmented evolutionary testing of Android apps , 2014, SIGSOFT FSE.

[12]  Porfirio Tramontana,et al.  Using GUI ripping for automated testing of Android applications , 2012, 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering.

[13]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[14]  Lisa Crispin,et al.  Agile Testing: A Practical Guide for Testers and Agile Teams , 2008 .

[15]  Spyridon Panagiotakis,et al.  Efficient Energy Consumption's Measurement on Android Devices , 2012, 2012 16th Panhellenic Conference on Informatics.

[16]  Simin Nadjm-Tehrani,et al.  Crowdroid: behavior-based malware detection system for Android , 2011, SPSM '11.

[17]  Yingjun Lyu,et al.  Automated Energy Optimization of HTTP Requests for Mobile Applications , 2016, 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).

[18]  Yuanyuan Zhang,et al.  App store mining and analysis: MSR for app stores , 2012, 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).

[19]  Ding Li,et al.  An Empirical Study of the Energy Consumption of Android Applications , 2014, 2014 IEEE International Conference on Software Maintenance and Evolution.

[20]  Lori L. Pollock,et al.  SEEDS: a software engineer's energy-optimization decision support framework , 2014, ICSE.

[21]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[22]  Ahmed E. Hassan,et al.  Prioritizing the devices to test your app on: a case study of Android game apps , 2014, SIGSOFT FSE.

[23]  Sam Malek,et al.  A Framework for Automated Security Testing of Android Applications on the Cloud , 2012, 2012 IEEE Sixth International Conference on Software Security and Reliability Companion.

[24]  Mika Katara,et al.  Experiences of System-Level Model-Based GUI Testing of an Android Application , 2011, 2011 Fourth IEEE International Conference on Software Testing, Verification and Validation.

[25]  Yepang Liu,et al.  Characterizing and detecting performance bugs for smartphone applications , 2014, ICSE.

[26]  Sorin Lerner,et al.  Towards Verifying Android Apps for the Absence of No-Sleep Energy Bugs , 2012, HotPower.

[27]  William G. J. Halfond,et al.  How Does Code Obfuscation Impact Energy Usage? , 2014, 2014 IEEE International Conference on Software Maintenance and Evolution.

[28]  Alessandra Gorla,et al.  Checking app behavior against app descriptions , 2014, ICSE.

[29]  Gabriele Bavota,et al.  API change and fault proneness: a threat to the success of Android apps , 2013, ESEC/FSE 2013.

[30]  Giuliano Antoniol,et al.  Recovering Traceability Links between Code and Documentation , 2002, IEEE Trans. Software Eng..

[31]  Chang Xu,et al.  Facilitating Reusable and Scalable Automated Testing and Analysis for Android Apps , 2015, Internetware.

[32]  Chris North,et al.  GreenVis: Energy-Saving Color Schemes for Sequential Data Visualization on OLED Displays , 2012 .

[33]  M. Godfrey,et al.  Bertillonage Determining the provenance of software development artifacts , 2011 .

[34]  Ning Chen,et al.  AR-miner: mining informative reviews for developers from mobile app marketplace , 2014, ICSE.

[35]  Alessandra Gorla,et al.  Automated Test Input Generation for Android: Are We There Yet? (E) , 2015, 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[36]  Samuel P. Midkiff,et al.  What is keeping my phone awake?: characterizing and detecting no-sleep energy bugs in smartphone apps , 2012, MobiSys '12.

[37]  Shih-Hao Hung,et al.  DroidDolphin: a dynamic Android malware detection framework using big data and machine learning , 2014, RACS '14.

[38]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.

[39]  Kristina Winbladh,et al.  Analysis of user comments: An approach for software requirements evolution , 2013, 2013 35th International Conference on Software Engineering (ICSE).

[40]  Morten Moshagen,et al.  Facets of visual aesthetics , 2010, Int. J. Hum. Comput. Stud..

[41]  Denys Poshyvanyk,et al.  Combining Formal Concept Analysis with Information Retrieval for Concept Location in Source Code , 2007, 15th IEEE International Conference on Program Comprehension (ICPC '07).

[42]  Mahadev Satyanarayanan,et al.  PowerScope: a tool for profiling the energy usage of mobile applications , 1999, Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications.

[43]  Iulian Neamtiu,et al.  Automating GUI testing for Android applications , 2011, AST '11.

[44]  Lori L. Pollock,et al.  How do code refactorings affect energy usage? , 2014, ESEM '14.

[45]  Ding Li,et al.  Optimizing energy of HTTP requests in Android applications , 2015, DeMobile@SIGSOFT FSE.

[46]  Ding Li,et al.  Detecting Display Energy Hotspots in Android Apps , 2015, 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST).

[47]  Chung-Ta King,et al.  ANEPROF: Energy Profiling for Android Java Virtual Machine and Applications , 2011, 2011 IEEE 17th International Conference on Parallel and Distributed Systems.

[48]  Ming Zhang,et al.  Where is the energy spent inside my app?: fine grained energy accounting on smartphones with Eprof , 2012, EuroSys '12.

[49]  Cristina V. Lopes,et al.  Trendy bugs: Topic trends in the Android bug reports , 2012, 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).

[50]  Matti Siekkinen,et al.  A System-Level Model for Runtime Power Estimation on Mobile Devices , 2010, 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing.

[51]  Tao Xie,et al.  A Grey-Box Approach for Automated GUI-Model Generation of Mobile Applications , 2013, FASE.

[52]  Ming Zhang,et al.  Bootstrapping energy debugging on smartphones: a first look at energy bugs in mobile devices , 2011, HotNets-X.

[53]  Ding Li,et al.  Making web applications more energy efficient for OLED smartphones , 2014, ICSE.

[54]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[55]  Ron Jeffries,et al.  Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process , 2002 .

[56]  Laurie A. Williams,et al.  On the value of static analysis for fault detection in software , 2006, IEEE Transactions on Software Engineering.

[57]  Alireza Sadeghi,et al.  Automated detection and mitigation of inter-application security vulnerabilities in Android (invited talk) , 2014, DeMobile@SIGSOFT FSE.

[58]  Ahmed E. Hassan,et al.  A Large-Scale Empirical Study on Software Reuse in Mobile Apps , 2014, IEEE Software.

[59]  R. Grissom,et al.  Effect sizes for research: A broad practical approach. , 2005 .

[60]  Ivar Jacobson,et al.  Object-oriented software engineering - a use case driven approach , 1993, TOOLS.

[61]  Steven Clarke,et al.  What Makes APIs Difficult to Use ? , 2008 .

[62]  Walid Maalej,et al.  User feedback in the appstore: An empirical study , 2013, 2013 21st IEEE International Requirements Engineering Conference (RE).

[63]  Mukul R. Prasad,et al.  Automated testing with targeted event sequence generation , 2013, ISSTA.

[64]  Miryung Kim,et al.  An Empirical Study of API Stability and Adoption in the Android Ecosystem , 2013, 2013 IEEE International Conference on Software Maintenance.

[65]  Chanchal Kumar Roy,et al.  Bug introducing changes: A case study with Android , 2012, 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).

[66]  Eleni Stroulia,et al.  Understanding Android Fragmentation with Topic Analysis of Vendor-Specific Bugs , 2012, 2012 19th Working Conference on Reverse Engineering.

[67]  Paramvir Bahl,et al.  Fine-grained power modeling for smartphones using system call tracing , 2011, EuroSys '11.

[68]  Fengyuan Xu,et al.  V-edge: Fast Self-constructive Power Modeling of Smartphones Based on Battery Voltage Dynamics , 2013, NSDI.

[69]  Michele Lanza,et al.  Software Analytics for Mobile Applications--Insights & Lessons Learned , 2013, 2013 17th European Conference on Software Maintenance and Reengineering.

[70]  Sam Malek,et al.  SIG-Droid: Automated system input generation for Android applications , 2015, 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE).

[71]  Gregg Rothermel,et al.  Leveraging user-session data to support Web application testing , 2005, IEEE Transactions on Software Engineering.

[72]  Alireza Sadeghi,et al.  EcoDroid: An Approach for Energy-Based Ranking of Android Apps , 2015, 2015 IEEE/ACM 4th International Workshop on Green and Sustainable Software.

[73]  Andrea Valdi,et al.  AndroTotal: a flexible, scalable toolbox and service for testing mobile malware detectors , 2013, SPSM '13.

[74]  Lei Yang,et al.  Accurate online power estimation and automatic battery behavior based power model generation for smartphones , 2010, 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[75]  Ding Li,et al.  Nyx: a display energy optimizer for mobile web apps , 2015, ESEC/SIGSOFT FSE.

[76]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[77]  Frederick Jelinek,et al.  Interpolated estimation of Markov source parameters from sparse data , 1980 .

[78]  Abram Hindle,et al.  Energy Profiles of Java Collections Classes , 2016, 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).

[79]  Rachel Harrison,et al.  Retrieving and analyzing mobile apps feature requests from online reviews , 2013, 2013 10th Working Conference on Mining Software Repositories (MSR).

[80]  Ying Zou,et al.  Exploring the Development of Micro-apps: A Case Study on the BlackBerry and Android Platforms , 2011, 2011 IEEE 11th International Working Conference on Source Code Analysis and Manipulation.

[81]  Gabriele Bavota,et al.  The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps , 2015, IEEE Transactions on Software Engineering.

[82]  Christos Faloutsos,et al.  Why people hate your app: making sense of user feedback in a mobile app store , 2013, KDD.

[83]  Mario Linares Vásquez Enabling Testing of Android Apps , 2015, ICSE.

[84]  Alireza Sadeghi,et al.  Energy-aware test-suite minimization for Android apps , 2016, ISSTA.

[85]  Scott W. Ambler,et al.  The Object Primer: Agile Model-Driven Development with UML 2.0 , 2004 .

[86]  Chanchal Kumar Roy,et al.  Useful, But Usable? Factors Affecting the Usability of APIs , 2011, 2011 18th Working Conference on Reverse Engineering.

[87]  Scott W. Ambler,et al.  Agile modeling: effective practices for extreme programming and the unified process , 2002 .

[88]  Yuan-Cheng Lai,et al.  On the Accuracy, Efficiency, and Reusability of Automated Test Oracles for Android Devices , 2014, IEEE Transactions on Software Engineering.

[89]  Ramesh Govindan,et al.  Estimating mobile application energy consumption using program analysis , 2013, 2013 35th International Conference on Software Engineering (ICSE).

[90]  Shih-Kun Huang,et al.  CRAXDroid: Automatic Android System Testing by Selective Symbolic Execution , 2014, 2014 IEEE Eighth International Conference on Software Security and Reliability-Companion.

[91]  Kenneth Ward Church,et al.  A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams , 1991 .

[92]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[93]  Christopher Vendome,et al.  How developers detect and fix performance bottlenecks in Android apps , 2015, 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).

[94]  Abram Hindle,et al.  Green mining: a methodology of relating software change and configuration to power consumption , 2013, Empirical Software Engineering.

[95]  Jian Lu,et al.  GreenDroid: Automated Diagnosis of Energy Inefficiency for Smartphone Applications , 2014, IEEE Transactions on Software Engineering.

[96]  Teemu Kanstrén,et al.  Murphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing , 2014, 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation Workshops.

[97]  Yung Ryn Choe,et al.  Andlantis: Large-scale Android Dynamic Analysis , 2014, ArXiv.

[98]  Yuan-Cheng Lai,et al.  Improving the Accuracy of Automated GUI Testing for Embedded Systems , 2014, IEEE Software.

[99]  Lei Yang,et al.  ADEL: an automatic detector of energy leaks for smartphone applications , 2012, CODES+ISSS.

[100]  P. Cañizares,et al.  Carlos A , 2013 .

[101]  George C. Necula,et al.  Guided GUI testing of android apps with minimal restart and approximate learning , 2013, OOPSLA.

[102]  Ahmed E. Hassan,et al.  Impact of Ad Libraries on Ratings of Android Mobile Apps , 2014, IEEE Software.

[103]  David M. Blei,et al.  Hierarchical relational models for document networks , 2009, 0909.4331.

[104]  Eli Tilevich,et al.  Reducing the Energy Consumption of Mobile Applications Behind the Scenes , 2013, 2013 IEEE International Conference on Software Maintenance.

[105]  Hsiang-Lin Wen,et al.  PATS: A Parallel GUI Testing Framework for Android Applications , 2015, 2015 IEEE 39th Annual Computer Software and Applications Conference.

[106]  Collin McMillan,et al.  ExPort: Detecting and visualizing API usages in large source code repositories , 2013, 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[107]  Marco Torchiano,et al.  An empirical validation of FindBugs issues related to defects , 2011 .

[108]  Alexander Serebrenik,et al.  Eclipse API usage: the good and the bad , 2013, Software Quality Journal.

[109]  Ahmed E. Hassan,et al.  Understanding reuse in the Android Market , 2012, 2012 20th IEEE International Conference on Program Comprehension (ICPC).

[110]  Abram Hindle,et al.  GreenMiner: a hardware based mining software repositories software energy consumption framework , 2014, MSR 2014.

[111]  Ramesh Govindan,et al.  Estimating Android applications' CPU energy usage via bytecode profiling , 2012, 2012 First International Workshop on Green and Sustainable Software (GREENS).

[112]  Gernot Heiser,et al.  An Analysis of Power Consumption in a Smartphone , 2010, USENIX Annual Technical Conference.

[113]  Gabriele Bavota,et al.  User reviews matter! Tracking crowdsourced reviews to support evolution of successful apps , 2015, 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).

[114]  Lin Zhong,et al.  Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays , 2012, IEEE Transactions on Mobile Computing.

[115]  Lionel C. Briand,et al.  A practical guide for using statistical tests to assess randomized algorithms in software engineering , 2011, 2011 33rd International Conference on Software Engineering (ICSE).

[116]  Mario Linares Vásquez,et al.  Mining Android App Usages for Generating Actionable GUI-Based Execution Scenarios , 2015, 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories.

[117]  Wladyslaw M. Turski,et al.  No Silver Bullet - Essence and Accidents of Software Engineering - Response , 1986, IFIP Congress.

[118]  Todd D. Millstein,et al.  RERAN: Timing- and touch-sensitive record and replay for Android , 2013, 2013 35th International Conference on Software Engineering (ICSE).

[119]  Denys Poshyvanyk Using information retrieval to support software maintenance tasks , 2009, 2009 IEEE International Conference on Software Maintenance.

[120]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[121]  Ying Zou,et al.  An Exploratory Study on the Relation between User Interface Complexity and the Perceived Quality , 2014, ICWE.

[122]  David Lo,et al.  What are the characteristics of high-rated apps? A case study on free Android Applications , 2015, 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).

[123]  Andreas Zeller,et al.  Automatically Generating Test Cases for Specification Mining , 2012, IEEE Transactions on Software Engineering.

[124]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[125]  Harald C. Gall,et al.  How can i improve my app? Classifying user reviews for software maintenance and evolution , 2015, 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).

[126]  Iulian Neamtiu,et al.  Targeted and depth-first exploration for systematic testing of android apps , 2013, OOPSLA.

[127]  Paolo Tonella,et al.  Interpolated n-grams for model based testing , 2014, ICSE.

[128]  Sam Malek,et al.  Testing android apps through symbolic execution , 2012, ACM SIGSOFT Softw. Eng. Notes.

[129]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[130]  Christopher Vendome,et al.  Automatically Discovering, Reporting and Reproducing Android Application Crashes , 2016, 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST).

[131]  Wei Le,et al.  A comparison of energy bugs for smartphone platforms , 2013, 2013 1st International Workshop on the Engineering of Mobile-Enabled Systems (MOBS).

[132]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[133]  Rui Zhang,et al.  An Empirical Study of Practitioners' Perspectives on Green Software Engineering , 2016, 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).

[134]  Mike Y. Chen,et al.  EverTutor: automatically creating interactive guided tutorials on smartphones by user demonstration , 2014, CHI.

[135]  Dan Boneh,et al.  Who killed my battery?: analyzing mobile browser energy consumption , 2012, WWW.

[136]  Rajkumar Buyya,et al.  Cloud-Based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges , 2013, IEEE Communications Surveys & Tutorials.

[137]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[138]  Premkumar T. Devanbu,et al.  On the naturalness of software , 2016, Commun. ACM.

[139]  Robert V. Binder,et al.  Testing Object-Oriented Systems: Models, Patterns, and Tools , 1999 .

[140]  Michael W. Godfrey,et al.  Software bertillonage: finding the provenance of an entity , 2011, MSR '11.

[141]  Lori L. Pollock,et al.  From benchmarks to real apps: Exploring the energy impacts of performance-directed changes , 2016, J. Syst. Softw..

[142]  Gabriele Bavota,et al.  How do API changes trigger stack overflow discussions? a study on the Android SDK , 2014, ICPC 2014.

[143]  Abram Hindle,et al.  Green mining: energy consumption of advertisement blocking methods , 2014, GREENS 2014.

[144]  Slava M. Katz,et al.  Estimation of probabilities from sparse data for the language model component of a speech recognizer , 1987, IEEE Trans. Acoust. Speech Signal Process..

[145]  Mario Linares Vásquez,et al.  Auto-completing bug reports for Android applications , 2015, ESEC/SIGSOFT FSE.

[146]  Ramesh Govindan,et al.  Calculating source line level energy information for Android applications , 2013, ISSTA.

[147]  Porfirio Tramontana,et al.  MobiGUITAR - A Tool for Automated Model-Based Testing of Mobile Apps , 2014 .

[148]  Ding Li,et al.  Integrated energy-directed test suite optimization , 2014, ISSTA 2014.

[149]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[150]  Marco Torchiano,et al.  Assessing the precision of FindBugs by mining Java projects developed at a university , 2010, 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010).

[151]  Lu Luo,et al.  Energy-Adaptive Display System Designs for Future Mobile Environments , 2003, MobiSys '03.

[152]  A. Strauss,et al.  The discovery of grounded theory: strategies for qualitative research aldine de gruyter , 1968 .

[153]  William Pugh,et al.  The Google FindBugs fixit , 2010, ISSTA '10.

[154]  Sergiy Vilkomir,et al.  Integrated TaaS platform for mobile development: Architecture solutions , 2013, 2013 8th International Workshop on Automation of Software Test (AST).

[155]  Rajesh Subramanyan,et al.  A survey on model-based testing approaches: a systematic review , 2007, WEASELTech '07.

[156]  Mayur Naik,et al.  Dynodroid: an input generation system for Android apps , 2013, ESEC/FSE 2013.

[157]  A. Hassan,et al.  What Do Mobile App Users Complain About ? A Study on Free iOS Apps , 2014 .

[158]  Christopher Krügel,et al.  BareDroid: Large-Scale Analysis of Android Apps on Real Devices , 2015, ACSAC 2015.

[159]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[160]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[161]  David Lo,et al.  Understanding the Test Automation Culture of App Developers , 2015, 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST).

[162]  Andrian Marcus,et al.  Recovering documentation-to-source-code traceability links using latent semantic indexing , 2003, 25th International Conference on Software Engineering, 2003. Proceedings..

[163]  Gabriele Bavota,et al.  Mining energy-greedy API usage patterns in Android apps: an empirical study , 2014, MSR 2014.

[164]  Lenin Ravindranath,et al.  SunCat: helping developers understand and predict performance problems in smartphone applications , 2014, ISSTA 2014.

[166]  Harald C. Gall,et al.  Populating a Release History Database from version control and bug tracking systems , 2003, International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings..

[167]  Walid Maalej,et al.  How Do Users Like This Feature? A Fine Grained Sentiment Analysis of App Reviews , 2014, 2014 IEEE 22nd International Requirements Engineering Conference (RE).

[168]  Jan Jürjens,et al.  Comparing Bug Finding Tools with Reviews and Tests , 2005, TestCom.

[169]  Sam Malek,et al.  A whitebox approach for automated security testing of Android applications on the cloud , 2012, 2012 7th International Workshop on Automation of Software Test (AST).

[170]  Lin Zhong,et al.  Power Modeling and Optimization for OLED Displays , 2012, IEEE Transactions on Mobile Computing.

[171]  I. Good THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .