EASE: EPC as a service to ease mobile core network deployment over cloud

The objective of this article is to demonstrate the feasibility of on-demand creation of cloud-based elastic mobile core networks, along with their lifecycle management. For this purpose the article describes the key elements to realize the architectural vision of EPC as a Service, an implementation option of the Evolved Packet Core, as specified by 3GPP, which can be deployed in cloud environments. To meet several challenging requirements associated with the implementation of EPC over a cloud infrastructure and providing it "as a Service," this article presents a number of different options, each with different characteristics, advantages, and disadvantages. A thorough analysis comparing the different implementation options is also presented.

[1]  Tarik Taleb,et al.  Gateway relocation avoidance-aware network function placement in carrier cloud , 2013, MSWiM.

[2]  Tarik Taleb,et al.  Service-aware network function placement for efficient traffic handling in carrier cloud , 2014, 2014 IEEE Wireless Communications and Networking Conference (WCNC).

[3]  Nick McKeown,et al.  OpenFlow: enabling innovation in campus networks , 2008, CCRV.

[4]  Yan Wang,et al.  Mobileflow: Toward software-defined mobile networks , 2013, IEEE Communications Magazine.

[5]  Thomas Bauschert,et al.  Mobile core network virtualization: A model for combined virtual core network function placement and topology optimization , 2015, Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).

[6]  Wolfgang Kellerer,et al.  A Virtual SDN-Enabled LTE EPC Architecture: A Case Study for S-/P-Gateways Functions , 2013, 2013 IEEE SDN for Future Networks and Services (SDN4FNS).

[7]  Jordi Ferrer Riera,et al.  On the Implementation of NFV over an OpenFlow Infrastructure: Routing Function Virtualization , 2013, 2013 IEEE SDN for Future Networks and Services (SDN4FNS).

[8]  Tarik Taleb,et al.  Toward carrier cloud: Potential, challenges, and solutions , 2014, IEEE Wireless Communications.

[9]  James Kempf,et al.  Moving the mobile Evolved Packet Core to the cloud , 2012, 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[10]  Fulvio Risso,et al.  Research Directions in Network Service Chaining , 2013, 2013 IEEE SDN for Future Networks and Services (SDN4FNS).

[11]  Fabrizio Granelli,et al.  EmPOWER: A Testbed for Network Function Virtualization Research and Experimentation , 2013, 2013 IEEE SDN for Future Networks and Services (SDN4FNS).

[12]  Luis M. Contreras,et al.  Software-defined control of the virtualized mobile packet core , 2015, IEEE Communications Magazine.