Catalytic Hydroxylation of Aromatic Hydrocarbons with O2

[1]  L. Riekert New developments in selective oxidation : edited by G. Centi and F. Trifiro; published by Elsevier Science Publishers, Amsterdam, 1990; xiv + 891 pp; price Dfl 385.00/U.S. $197.50 , 1991 .

[2]  A. Zuberbühler Kinetics and thermodynamics of dioxygen interaction with copper , 1991 .

[3]  K. Karlin,et al.  Biomimetic Binding and Activation of Dioxygen with Copper Complexes , 1991 .

[4]  A. Clearfield,et al.  New hexaaza macrocyclic binucleating ligands. Oxygen insertion with a dicopper(I) Schiff base macrocyclic complex , 1990 .

[5]  B. Feringa,et al.  Bimetallic oxidation catalysts. Synthesis, X-ray analysis, and reactivity of a binuclear p-hydroquinone-containing copper (II) complex , 1990 .

[6]  A. Kunai,et al.  Direct Conversion of Benzene to Phenols Under Ambient Conditions , 1990 .

[7]  K. Karlin,et al.  Copper-dioxygen chemistry: a bioinorganic challenge , 1989 .

[8]  M. Drew,et al.  Activation of an aryl CH bond to oxygen insertion: Model for the phenoloxidase activity of tyrosinase , 1989 .

[9]  K. Karlin,et al.  Kinetic and thermodynamic studies on the reaction of oxygen with two dinuclear copper(I) complexes , 1988 .

[10]  K. Karlin,et al.  Models for Copper Proteins: Reversible Binding and Activation of Dioxygen and the Reactivity of Peroxo and Hydroperoxo Dicopper(II) Complexes , 1988 .

[11]  L. Que Metal clusters in proteins , 1988 .

[12]  L. Casella,et al.  Synthesis and reactivity of a family of copper monooxygenase model systems , 1988 .

[13]  R. Shukla,et al.  Kinetics and mechanism of the hydroxylation of toluene catalyzed by a ruthenium(III) analogue of the udenfriend system: ru(III)-edta-ascorbate-molecular oxygen , 1988 .

[14]  A. Kunai,et al.  Direct conversion of benzene to hydroquinone. Cooperative action of copper(I) ion and dioxygen , 1988 .

[15]  H. Okada,et al.  Oxidation of benzene to phenols with molecular oxygen promoted by copper(I) chloride , 1988 .

[16]  J. E. Lyons Dependence of Reaction Pathways and Product Distribution on the Oxidation State of Palladium Catalysts for the Reactions of Olefinic and Aromatic Substrates with Molecular Oxygen , 1988 .

[17]  D. T. Sawyer,et al.  Oxygen Complexes and Oxygen Activation by Transition Metals , 1988, Springer US.

[18]  K. Karlin,et al.  Dioxygen—Copper Reactivity: Hydroxylation-induced Methyl Migration in a Copper Monooxygenase Model System , 1987 .

[19]  T. Hayakawa,et al.  Catalytic hydroxylation of benzene by the copper-ascorbic acid-O2 system , 1987 .

[20]  K. Karlin,et al.  Dioxygen-copper reactivity: intermediacy of a peroxo-dicopper(II) (dioxygen-copper) complex in the hydroxylation reaction of a model mono-oxygenase system , 1986 .

[21]  M. Tsuda,et al.  Quantum-chemical elucidation of the mechanism of the NIH-shift during aryl hydroxylation catalyzed by cytochrome P-450. , 1986, Chemical & pharmaceutical bulletin.

[22]  A. Kunai,et al.  Mechanistic study of air oxidation of benzene in sulfuric acid catalyzed by cuprous ions , 1986 .

[23]  A. Kunai,et al.  The role of oxygen in the hydroxylation reaction of benzene with Fenton's reagent. Oxygen 18 tracer study. , 1986, Journal of the American Chemical Society.

[24]  H. V. Bekkum,et al.  One-step oxidation of benzene to 1,4-dihydroxybenzene in the presence of copper(I)chloride , 1986 .

[25]  K. Karlin,et al.  Bioinorganic chemical modeling of dioxygen-activating copper proteins , 1985 .

[26]  E. Solomon,et al.  Substrate analogue binding to the coupled binuclear copper active site in tyrosinase , 1985 .

[27]  K. Karlin,et al.  Copper-mediated hydroxylation of an arene ― model system for the action of copper monooxygenases: structures of a binuclear Cu(I) complex and its oxygenated product , 1984 .

[28]  Mitchell R. Malachowski,et al.  SYNTHESIS, STRUCTURE AND REACTIVITY OF A BINUCLEAR THREE-COORDINATE COPPER(I) COMPLEX , 1982 .

[29]  H. S. Mason,et al.  Oxidases and Related Redox Systems , 1982 .

[30]  S. Sligar,et al.  Chemical mechanisms for cytochrome P-450 hydroxylation: evidence for acylation of heme-bound dioxygen. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Castle,et al.  Aromatic hydroxylation by oxy-radicals — a possible model for hydroxylation catalysed by cytochrome P450 , 1980 .

[32]  T. Spiro Metal ion activation of dioxygen , 1980 .

[33]  D. Jerina,et al.  Aromatic hydroxylation. Part 6. Oxidation of naphthalene by dioxygen in the presence of iron(II) salts , 1978 .

[34]  T. Matsuura Bio-mimetic oxygenation , 1977 .

[35]  John T. Groves,et al.  Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron , 1976 .

[36]  C. Walling Fenton's reagent revisited , 1975 .

[37]  E. Hancock Benzene and its industrial derivatives , 1975 .

[38]  H. Mimoun Activation de l'oxygne molculaire nouveaux systmes d'hydroxylation des hydrocarbures , 1975 .

[39]  J. Groves,et al.  Stereospecific aliphatic hydroxylation by an iron-based oxidant , 1974 .

[40]  O. Hayaishi Molecular mechanisms of oxygen activation , 1974 .

[41]  R. J. Stouwie Theory and Problems of Child Development. 2nd ed. , 1972 .

[42]  D. Jerina,et al.  Arene oxides as intermediates in the metabolism of aromatic substrates: alkyl and oxygen migrations during isomerization of alkylated arene oxides. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. B. Sharpless,et al.  Oxotransition metal oxidants as mimics for the action of mixed-function oxygenases. "NIH shift" with chromyl reagents. , 1971, Journal of the American Chemical Society.

[44]  D. Jerina,et al.  1,2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. , 1970, Biochemistry.

[45]  V. Ullrich Oxygen Activation by the Iron(II)-2-Mercaptobenzoic Acid Complex. A Model for Microsomal Mixed Function Oxygenases , 1969, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.

[46]  M. Viscontini Tetrahydropterine als Coenzyme der enzymatischen Hydroxylierung , 1968 .

[47]  D. Jerina,et al.  Intramolecular Migrations during Hydroxylation of Aromatic Compounds: The NIH Shift , 1968 .

[48]  S Udenfriend,et al.  Hydroxylation-induced migration: the NIH shift. Recent experiments reveal an unexpected and general result of enzymatic hydroxylation of aromatic compounds. , 1967, Science.

[49]  D. Jerina,et al.  INTRAMOLECULAR MIGRATION OF TRITIUM AND DEUTERIUM DURING NONENZYMATIC AROMATIC HYDROXYLATION. , 1967 .

[50]  G. A. Hamilton,et al.  The Hydroxylation of Anisole by Hydrogen Peroxide in the Presence of Catalytic Amounts of Ferric Ion and Catechol. Scope, Requirements, and Kinetic Studies1,2 , 1966 .

[51]  M. Viscontini,et al.  De la chimie des ptérines. 15e communication. Hydroxylation non‐enzymatique de la phénylalanine en tyrosine à l'aide de ptérines tétrahydrogénées , 1966 .

[52]  G. A. Hamilton,et al.  Oxidation by Molecular Oxygen. I. Reactions of a Possible Model System for Mixed-Function Oxidases , 1964 .

[53]  I. Taub,et al.  Pulse Radiolysis Studies. I. Transient Spectra and Reaction‐Rate Constants in Irradiated Aqueous Solutions of Benzene , 1962 .

[54]  L. Lukens,et al.  On the mechanism of action of an ascorbic acid-dependent nonenzymatic hydroxylating system. , 1960, The Journal of biological chemistry.

[55]  O. Hayaishi,et al.  MECHANISM OF THE PYROCATECHASE REACTION , 1955 .

[56]  H. S. Mason,et al.  OXYGEN TRANSFER AND ELECTRON TRANSPORT BY THE PHENOLASE COMPLEX1 , 1955 .

[57]  B. Brodie,et al.  Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. , 1954, The Journal of biological chemistry.

[58]  H. Hock,et al.  Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Über Peroxyde von Benzol-Derivaten , 1944 .

[59]  W. C. Bray,et al.  FERRYL ION, A COMPOUND OF TETRAVALENT IRON , 1932 .