Saturation Numbers for Linear Forests$$P_5 \cup tP_2$$P5∪tP2

A graph $$G$$G is $$F$$F-saturated if it has no $$F$$F as a subgraph, but does contain $$F$$F after the addition of any new edge. The saturation number, $$sat(n,F)$$sat(n,F), is the minimum number of edges of a graph in the set of all $$F$$F-saturated graphs with order $$n$$n. In this paper, we determine the saturation number $$sat(n,P_5\cup tP_2)$$sat(n,P5∪tP2) for $$n\ge 3t+8$$n≥3t+8 and characterize the extremal graphs for $$n>(18t+76)/5$$n>(18t+76)/5.

[1]  Maiko Shigeno,et al.  On the Number of Edges in a Minimum $$C_6$$C6-Saturated Graph , 2015, Graphs Comb..

[2]  Ya-Chen Chen,et al.  Minimum C5‐saturated graphs , 2009, J. Graph Theory.

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  Michael S. Jacobson,et al.  tKp-saturated graphs of minimum size , 2009, Discret. Math..

[5]  NEAL BUSHAW,et al.  Turán Numbers of Multiple Paths and Equibipartite Forests , 2011, Combinatorics, Probability and Computing.

[6]  Maria Fonoberova,et al.  The saturation function of complete partite graphs , 2010 .

[7]  Ralph J. Faudree,et al.  Saturation Numbers of Books , 2008, Electron. J. Comb..

[8]  Ya-Chen Chen Minimum C 5 -saturated graphs , 2009 .

[9]  Ralph J. Faudree,et al.  Saturation Numbers for Nearly Complete Graphs , 2013, Graphs Comb..

[10]  Ya-Chen Chen,et al.  All minimum C5‐saturated graphs , 2011, J. Graph Theory.

[11]  Ralph J. Faudree,et al.  A Survey of Minimum Saturated Graphs , 2011 .

[12]  Michael S. Jacobson,et al.  Saturation Numbers for Trees , 2009, Electron. J. Comb..

[13]  Béla Bollobás,et al.  On a Conjecture of Erdos, Hajnal and Moon , 1967 .

[14]  Zsolt Tuza,et al.  Saturated graphs with minimal number of edges , 1986, J. Graph Theory.

[15]  Zsolt Tuza,et al.  Cycle-saturated graphs of minimum size , 1996, Discret. Math..

[16]  Paul Erdös,et al.  On a Problem in Graph Theory , 1963, The Mathematical Gazette.