Translation surfaces and their orbit closures: An introduction for a broad audience
暂无分享,去创建一个
[1] Y. Minsky,et al. Nondivergence of horocyclic flows on moduli space , 2002 .
[2] Euler characteristics of Teichmüller curves in genus two , 2006, math/0611409.
[3] W. Veech. The Teichmuller Geodesic Flow , 1986 .
[4] Teichmuller curves, triangle groups, and Lyapunov exponents , 2005, math/0511738.
[5] G. Forni. Chapter 8 - On the Lyapunov Exponents of the Kontsevich–Zorich Cocycle , 2006 .
[6] Steven P. Kerckhoff,et al. Ergodicity of billiard flows and quadratic differentials , 1986 .
[7] Thomas A. Schmidt,et al. Invariants of translation surfaces , 2001 .
[8] Simion Filip. Splitting mixed Hodge structures over affine invariant manifolds , 2013, 1311.2350.
[9] M. Viana. Ergodic Theory of Interval Exchange Maps , 2006 .
[10] H. Masur. Interval Exchange Transformations and Measured Foliations , 1982 .
[11] Richard Kenyon,et al. Billiards on rational-angled triangles , 2000 .
[12] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards , 1989 .
[13] Simion Filip. Semisimplicity and rigidity of the Kontsevich-Zorich cocycle , 2013, 1307.7314.
[14] C. McMullen. Dynamics of SL2(ℝ) Over Moduli Space in Genus Two , 2007 .
[15] Jean-Christophe Yoccoz,et al. Continued Fraction Algorithms for Interval Exchange Maps: an Introduction ? , 2003 .
[16] A. Eskin,et al. Isolation, equidistribution, and orbit closures for the SL(2,R) action on Moduli space , 2013, 1305.3015.
[17] Duc-Manh Nguyen,et al. Non-Veech surfaces in H^hyp(4) are generic , 2013, 1306.4922.
[18] A. N. Zemlyakov,et al. Topological transitivity of billiards in polygons , 1975 .
[19] P. Deligne. Un théorème de finitude pour la monodromie , 1987 .
[20] C. Ward. Calculation of Fuchsian groups associated to billiards in a rational triangle , 1998, Ergodic Theory and Dynamical Systems.
[21] Thomas A. Schmidt,et al. Chapter 6 - An Introduction to Veech Surfaces , 2006 .
[22] Martin Möller. Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve , 2004, math/0410262.
[23] Matt Bainbridge,et al. The Deligne–Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3 , 2012 .