Metallization of DNA

Abstract The low intrinsic conductance of DNA seems to be a serious obstacle for the use of its unique self-assembly capabilities in nanoelectronics. The addition of metal atoms to the structure of DNA turned out to be a promising way to decrease the resistance significantly. Here, we review various techniques to combine metal and DNA, ranging from the application of a few atoms to complete metal coverage of the biomolecule. In addition, we investigate the resulting properties of the assembled hybrid structures. In some cases we obtain highly conductive nanowires, which exhibit the low temperature behaviour of polycrystalline metallic structures. Possible applications like single-electron devices or electronic DNA-recognition systems are discussed on the basis of their proof of concept studies.

[1]  Wolfgang Pompe,et al.  Three-dimensional metallization of microtubules , 1997 .

[2]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[3]  M Hjort,et al.  Band resonant tunneling in DNA molecules. , 2001, Physical review letters.

[4]  Simón,et al.  Stretching DNA with a receding meniscus: Experiments and models. , 1995, Physical review letters.

[5]  Mark A. Ratner,et al.  Electronic properties of DNA , 2001 .

[6]  Christoph Strunk,et al.  Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements , 1998 .

[7]  B. Giese Long-distance charge transport in DNA: the hopping mechanism. , 2000, Accounts of chemical research.

[8]  W. Pompe,et al.  Initial nucleation of platinum clusters after reduction of K(2)PtCl(4) in aqueous solution: a first principles study. , 2001, Journal of the American Chemical Society.

[9]  V. Rotello,et al.  Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. , 2001, Journal of the American Chemical Society.

[10]  Kentaro Tanaka,et al.  Synthesis of a Novel Nucleoside for Alternative DNA Base Pairing through Metal Complexation. , 1999, The Journal of organic chemistry.

[11]  Wolfgang Pompe,et al.  Low-temperature resistance of DNA-templated nanowires , 2002 .

[12]  Y. Tor,et al.  2,2'-Bipyridine ligandoside: a novel building block for modifying DNA with intra-duplex metal complexes. , 2001, Journal of the American Chemical Society.

[13]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[14]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[15]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[16]  Kentaro Tanaka,et al.  A Palladium-mediated DNA Base Pair of a β-C-Nucleoside Possessing a 2-Aminophenol as the Nucleobase , 2001 .

[17]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[18]  L. Delbaere,et al.  M-DNA: A complex between divalent metal ions and DNA which behaves as a molecular wire. , 1999, Journal of molecular biology.

[19]  Chaikin,et al.  Electron localization and interaction effects in palladium and palladium-gold films. , 1985, Physical review. B, Condensed matter.

[20]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[21]  Wolfgang Pompe,et al.  Fabrication of highly oriented nanocluster arrays by biomolecular templating , 1999 .

[22]  D. Thouless,et al.  Maximum metallic resistance in thin wires , 1977 .

[23]  Stephen Mann,et al.  Molecular tectonics in biomineralization and biomimetic materials chemistry , 1993, Nature.

[24]  Peter G. Schultz,et al.  A Novel Copper-Mediated DNA Base Pair , 2000 .

[25]  G. Schmid,et al.  Clusters and colloids : from theory to applications , 1994 .

[26]  Stephen Mann,et al.  Biomimetic Materials Chemistry , 1995 .

[27]  Masatsugu Shimomura,et al.  Anisotropic Electric Conductivity in an Aligned DNA Cast Film , 1998 .

[28]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[29]  H. Gaub,et al.  Cisplatin Changes the Mechanics of Single DNA Molecules. , 2000, Angewandte Chemie.

[30]  J. Schnur,et al.  Lipid Tubules: A Paradigm for Molecularly Engineered Structures , 1993, Science.

[31]  Michael Tinkham,et al.  Scanned Conductance Microscopy of Carbon Nanotubes and λ-DNA , 2002 .

[32]  Wolfgang Pompe,et al.  Construction of highly conductive nanowires on a DNA template , 2001 .

[33]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[34]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[35]  S. R. Bigham,et al.  The influence of adenine content on the properties of Q-CdS clusters stabilized by polynucleotides , 1995 .

[36]  Tomoji Kawai,et al.  Self-assembled DNA networks and their electrical conductivity , 2000 .

[37]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[38]  Wolfgang Pompe,et al.  Scanning force microscopy of DNA metallization , 2002 .

[39]  C. Papadopoulos,et al.  Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. , 2001, Physical review letters.

[40]  W. E. Ford,et al.  Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles , 2001 .

[41]  G Gruner,et al.  Charge transport along the lambda-DNA double helix. , 2000, Physical review letters.

[42]  Tsukasa Torimoto,et al.  Fabrication of CdS Nanoparticle Chains along DNA Double Strands , 1999 .

[43]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[44]  H. Gaub,et al.  Discriminating small molecule DNA binding modes by single molecule force spectroscopy , 2002, FEBS letters.

[45]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[46]  J. Berg,et al.  Principles Of Bioinorganic Chemistry , 1994 .

[47]  Michael Krueger,et al.  Sequence-Specific Molecular Lithography on Single DNA Molecules , 2002, Science.

[48]  Jörg Peplies,et al.  Covalent DNA-Streptavidin Conjugates as Building Blocks for Novel Biometallic Nanostructures. , 1998, Angewandte Chemie.

[49]  M. Sastry,et al.  DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure , 2001 .

[50]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[51]  Wolfgang Pompe,et al.  Initial Nucleation of Platinum Clusters after Reduction of K2PtCl4 in Aqueous Solution: A First Principles Study. , 2001 .

[52]  Itamar Willner,et al.  Au-nanoparticle nanowires based on DNA and polylysine templates. , 2002, Angewandte Chemie.

[53]  B. Martin,et al.  DNA‐Directed Assembly of Gold Nanowires on Complementary Surfaces , 2001 .

[54]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[55]  V. Moreno,et al.  Study of the interaction of DNA with cisplatin and other Pd(II) and Pt(II) complexes by atomic force microscopy. , 1998, Nucleic acids research.

[56]  G. Stubbs,et al.  Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus , 1999 .

[57]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[58]  Tomoji Kawai,et al.  Control of electrical conduction in DNA using oxygen hole doping , 2002 .

[59]  P. Schultz,et al.  Structure of a copper-mediated base pair in DNA. , 2001, Journal of the American Chemical Society.

[60]  C. Mirkin,et al.  The Electrical Properties of Gold Nanoparticle Assemblies Linked by DNA. , 2000, Angewandte Chemie.

[61]  N. Seeman DNA nanotechnology: novel DNA constructions. , 1998, Annual review of biophysics and biomolecular structure.

[62]  Wolfgang Pompe,et al.  Nanoscale palladium metallization of DNA , 2000 .

[63]  Christopher A. Lepre,et al.  Platinum-195 NMR kinetic and mechanistic studies of cis- and trans-diamminedichloroplatinum(II) binding to DNA , 1990 .

[64]  D. D. Eley,et al.  Conduction in Nucleic Acid Components , 1963, Nature.

[65]  M. Sastry,et al.  Linear Superclusters of Colloidal Gold Particles by Electrostatic Assembly on DNA Templates , 2001 .

[66]  Xin Li,et al.  Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA , 1996 .

[67]  P. Chaikin,et al.  Thermoelectric power of two-dimensional Pd and Pd-Au films , 1983 .

[68]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.