ARNN: Un paquete para la predicción de series de tiempo usando redes neuronales autorregresivas ARNN: A packages for time series forecasting using autoregressive neural networks

In this article, we describe a package for nonlinear time series forecasting using autoregressive neural networks (and multilayer perceptrons by imposing some restrictions to the model) with adaptive activation function; The use of the package and some functionality are illustrated for one nonlinear time series.

[1]  H. Velásquez,et al.  UN MODELO NO LINEAL PARA LA PREDICCIÓN DE LA DEMANDA MENSUAL DE ELECTRICIDAD EN COLOMBIA , 2009 .

[2]  H. Velásquez,et al.  TENDENCIAS EN LA PREDICCIÓN Y ESTIMACIÓN DE LOS INTERVALOS DE CONFIANZA USANDO MODELOS DE REDES NEURONALES APLICADOS A SERIES TEMPORALES , 2006 .

[3]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[4]  Clive W. J. Granger,et al.  Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests , 1993 .

[5]  H. White,et al.  An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks , 1989, International 1989 Joint Conference on Neural Networks.

[6]  Timo Teräsvirta,et al.  POWER OF THE NEURAL NETWORK LINEARITY TEST , 1993 .

[7]  Rob J Hyndman,et al.  Automatic Time Series Forecasting: The forecast Package for R , 2008 .

[8]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[9]  Yris Olaya Morales,et al.  ANÁLISIS Y PREDICCIÓN DE SERIES DE TIEMPO EN MERCADOS DE ENERGÍA USANDO EL LENGUAJE R , 2011 .

[10]  Reinaldo Castro Souza,et al.  MODELADO DEL PRECIO SPOT DE LA ELECTRICIDAD EN BRASIL USANDO UNA RED NEURONAL AUTORREGRESIVA ELECTRICITY SPOT PRICE MODELLING IN BRASIL USING AN AUTOREGRESSIVE NEURAL NETWORK , 2008 .

[11]  Juan D. Velásquez,et al.  Es el proyecto R para la computación estadística apropiado para la inteligencia computacional , 2011 .

[12]  Ana González-Marcos,et al.  TAO-robust backpropagation learning algorithm , 2005, Neural Networks.

[13]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[14]  Stefan Fritsch,et al.  neuralnet: Training of Neural Networks , 2010, R J..

[15]  Zhen Zhang,et al.  Feedforward networks with monotone constraints , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[16]  Yogesh Singh,et al.  An activation function adapting training algorithm for sigmoidal feedforward networks , 2004, Neurocomputing.

[17]  José Manuel Benítez,et al.  Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS , 2012 .