Evidence of large magnetostructural effects in austenitic stainless steels.

The surprisingly low magnetic transition temperatures in austenitic stainless steels indicate that in these Fe-based alloys magnetic disorder might be present at room temperature. Using a first-principles approach, we have obtained a theoretical description of the stacking fault energy in Fe(100-c-n)Cr(c)Ni(n) alloys as a function of composition and temperature. Comparison of our results with experimental databases provides a strong evidence for large magnetic fluctuations in these materials. We demonstrate that the effects of alloying additions on the structural properties of steels contain a dominant magnetic contribution, which stabilizes the most common austenitic steels at normal service conditions.

[1]  A. Ruff,et al.  The temperature dependence of stacking fault energy in Fe-Cr-Ni alloys , 1971 .

[2]  S. Bukshpan,et al.  Search for Magnetic Ordering in hcp Iron , 1972 .

[3]  W. V. Haeringen,et al.  Stacking-fault energies in semiconductors from first-principles calculations , 1987 .

[4]  G. Grimvall,et al.  Polymorphism in Metals I. Vibrational Free Energy , 1975 .

[5]  A. F. Padilha,et al.  Influence of biobium on stacking-fault energy of all-austenite stainless steels , 1992 .

[6]  Y. Petrov Effect of carbon and nitrogen on the stacking fault energy of high-alloyed iron-based austenite , 2003, International Journal of Materials Research.

[7]  B. Johansson,et al.  Elastic property maps of austenitic stainless steels. , 2002, Physical review letters.

[8]  Börje Johansson,et al.  Stainless steel optimization from quantum mechanical calculations , 2003, Nature materials.

[9]  V. Heine,et al.  Inter-layer interactions and the origin of SiC polytypes , 1988 .

[10]  Grimvall,et al.  Spin fluctuations in paramagnetic chromium determined from entropy considerations. , 1993, Physical review. B, Condensed matter.

[11]  A. Majumdar,et al.  Magnetic phase diagram of Fe 80-x Ni x Cr 20 (10<=x<=30) alloys , 1984 .

[12]  B. Johansson,et al.  Anisotropic lattice distortions in random alloys from first-principles theory. , 2001, Physical review letters.

[13]  R. E. Schramm,et al.  Stacking fault energies of seven commercial austenitic stainless steels , 1975 .

[14]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation , 1976 .

[15]  M. Shimizu Effects of spin fluctuations in itinerant electron ferromagnets , 1981 .

[16]  A. Thompson,et al.  The composition dependence of stacking fault energy in austenitic stainless steels , 1977 .

[17]  G. Grimvall Polymorphism of Metals. III. Theory of the Temperature-Pressure Phase Diagram of Iron , 1976 .

[18]  K. Ishida Direct estimation of stacking fault energy by thermodynamic analysis , 1976 .

[19]  A. Majumdar,et al.  Magnetization study of γ-Fe 80-x Ni x Cr 20 (14<=x<=30) alloys to 20 T , 1997 .

[20]  Skriver,et al.  Crystal structure from one-electron theory. , 1985, Physical review. B, Condensed matter.

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  R. Weiss,et al.  Components of the Thermodynamic Functions of Iron , 1956 .

[23]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[24]  P. Ferreira,et al.  A thermodynamic model for the stacking-fault energy , 1998 .

[25]  G. Shirane,et al.  Magnetic fluctuation scattering from metallic nickel above the Curie temperature , 1983 .

[26]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .

[27]  A. Miodownik,et al.  The calculation of stacking fault energies in FeNiCr alloys , 1978 .

[28]  M. Hillert,et al.  A model for alloying in ferromagnetic metals , 1978 .

[29]  Johnson,et al.  Ferromagnetism versus aniferromagnetism in face-centered-cubic iron. , 1986, Physical review letters.

[30]  B. Johansson,et al.  Origin of the Invar effect in iron–nickel alloys , 1999, Nature.

[31]  N. Hamada,et al.  Magnetism of iron above the Curie temperature , 1983 .

[32]  B. Johansson,et al.  Iron–silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle , 2003, Nature.

[33]  Grimvall Spin disorder in paramagnetic fcc iron. , 1989, Physical review. B, Condensed matter.

[34]  Francois Abrassart Stress-induced γ→ α martensitic transformation in two carbon stainless steels. Application to trip steels , 1973 .