Temperature-Stable Energy-Efficient High-Bit-Rate Oxide-Confined 980 nm VCSELs for Optical Interconnects

Highly temperature-stable error-free data transmission at 38 Gb/s from 25 to 85 °C is achieved. Record low heat dissipation of 145 and 139 fJ/bit is achieved at 35 Gb/s at 25 and 85 °C, respectively.

[1]  Hui Li,et al.  Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs , 2014, IEEE Journal of Quantum Electronics.

[2]  Hui Li,et al.  Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat , 2013 .

[3]  P. Moser,et al.  81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects , 2011 .

[4]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs operating error free up to 57 Gbit/s , 2013 .

[5]  Yu-Chia Chang,et al.  Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  P. Westbergh,et al.  Impact of Photon Lifetime on High-Speed VCSEL Performance , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Fumio Koyama,et al.  29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity , 2013 .

[8]  P. Moser,et al.  Modulation Characteristics of High-Speed and High-Temperature Stable 980 nm Range VCSELs Operating Error Free at 25 Gbit/s up to 85 °C , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Alex Mutig,et al.  85 °C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers , 2012 .

[10]  P. Wolf,et al.  1550-nm High-Speed Short-Cavity VCSELs , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  K. Janner,et al.  Qualification tests of 474 photomultiplier tubes for the inner detector of the Double Chooz experiment , 2011, 1104.0758.

[12]  A. Rissons,et al.  VCSEL Intrinsic Response Extraction Using $T$-Matrix Formalism , 2009, IEEE Photonics Technology Letters.

[13]  Larry A. Coldren,et al.  High-efficiency, high-speed VCSELs for optical interconnects , 2009 .

[14]  Hong Liu,et al.  Scaling Optical Interconnects in Datacenter Networks Opportunities and Challenges for WDM , 2010, 2010 18th IEEE Symposium on High Performance Interconnects.

[15]  Dieter Bimberg,et al.  Ultrafast VCSELs for Datacom , 2010, IEEE Photonics Journal.

[16]  Hui Li,et al.  Temperature-Stable 980-nm VCSELs for 35-Gb/s Operation at 85 °C With 139-fJ/bit Dissipated Heat , 2014, IEEE Photonics Technology Letters.

[17]  Milton Feng,et al.  The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity , 2011 .

[18]  D. Bimberg,et al.  Temperature-Dependent Small-Signal Analysis of High-Speed High-Temperature Stable 980-nm VCSELs , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Hui Li,et al.  Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C , 2014 .

[20]  P. Westbergh,et al.  High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85$^{\circ}{\rm C}$ , 2013, IEEE Photonics Technology Letters.

[21]  Jeffrey A. Kash,et al.  Optical interconnects for high performance computing , 2012, 2009 Asia Communications and Photonics conference and Exhibition (ACP).

[22]  Alexei Sirbu,et al.  Long-wavelength VCSELs: Power-efficient answer , 2009 .

[23]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[24]  Alex Mutig,et al.  Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C , 2014 .

[25]  Alan F. Benner,et al.  Exploitation of optical interconnects in future server architectures , 2005 .

[26]  Hui Li,et al.  Energy-efficient oxide-confined high-speed VCSELs for optical interconnects , 2014, Photonics West - Optoelectronic Materials and Devices.

[27]  Jens Dopke,et al.  Measurement of the thermal resistance of VCSEL devices , 2011 .