Genome wide identification and characterization of MATE family genes in mangrove plants

[1]  S. Tangphatsornruang,et al.  Chromosome‐level genome assembly of Indian mangrove (Ceriops tagal) revealed a genome‐wide duplication event predating the divergence of Rhizophoraceae mangrove species , 2022, The plant genome.

[2]  Yingkao Hu,et al.  Genome-Wide Identification and Characterisation of Wheat MATE Genes Reveals Their Roles in Aluminium Tolerance , 2022, International journal of molecular sciences.

[3]  S. Tangphatsornruang,et al.  A de novo reference assembly of the yellow mangrove Ceriops zippeliana genome , 2022, G3.

[4]  S. Tangphatsornruang,et al.  De Novo Reference Assembly of the Upriver Orange Mangrove (Bruguiera sexangula) Genome , 2022, Genome biology and evolution.

[5]  G. Chung,et al.  The Identification of MATE Antisense Transcripts in Soybean Using Strand-Specific RNA-Seq Datasets , 2022, Genes.

[6]  Yuepeng Han,et al.  Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus × domestica Borkh) , 2021, BMC Genomics.

[7]  Tanuja,et al.  A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina , 2021, Communications biology.

[8]  A. Nargotra,et al.  Comprehensive genome-wide identification, characterization, and expression profiling of MATE gene family in Nicotiana tabacum. , 2021, Gene.

[9]  S. Xiao,et al.  Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum , 2020, Plants.

[10]  Peer Bork,et al.  SMART: recent updates, new developments and status in 2020 , 2020, Nucleic Acids Res..

[11]  Congting Ye,et al.  The genomic and transcriptomic foundations of viviparous seed development in mangroves , 2020, bioRxiv.

[12]  Jianbin Li,et al.  Genome-wide Analysis of the Rice Mate Gene Family: Identification, Genomic Organization and Expression Profiles in Response to Abiotic Stresses , 2020 .

[13]  R. Bell,et al.  Genome-wide identification and transcriptional analyses of MATE transporter genes in root tips of wild Cicer spp. under aluminium stress , 2020, bioRxiv.

[14]  O. Nureki,et al.  Structural biology of the multidrug and toxic compound extrusion superfamily transporters. , 2019, Biochimica et biophysica acta. Biomembranes.

[15]  Narmada Thanki,et al.  CDD/SPARCLE: the conserved domain database in 2020 , 2019, Nucleic Acids Res..

[16]  G. Rivera-Ingraham,et al.  Wastewater bioremediation by mangrove ecosystems impacts crab ecophysiology: In-situ caging experiment. , 2019, Aquatic toxicology.

[17]  D. Kar,et al.  The multitasking abilities of MATE transporters in plants. , 2019, Journal of experimental botany.

[18]  Kunbo Wang,et al.  Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis , 2019, Front. Plant Sci..

[19]  Huyi He,et al.  Genome-wide analysis of the MATE gene family in potato , 2018, Molecular Biology Reports.

[20]  Jian Zhao,et al.  Global analysis of the MATE gene family of metabolite transporters in tomato , 2017, BMC Plant Biology.

[21]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[22]  Zhenglin Du,et al.  The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. , 2017, National science review.

[23]  Yingkao Hu,et al.  The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana , 2016, BMC Plant Biology.

[24]  Yingkao Hu,et al.  The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana , 2016, BMC Plant Biology.

[25]  Wei Zhou,et al.  Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment , 2016, Journal of Genetics.

[26]  S. Das,et al.  Antioxidative response to abiotic and biotic stresses in mangrove plants: A review , 2016 .

[27]  Min Lu,et al.  Disulfide Cross-linking of a Multidrug and Toxic Compound Extrusion Transporter Impacts Multidrug Efflux* , 2016, The Journal of Biological Chemistry.

[28]  J. Gai,et al.  Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean , 2016, BMC Genomics.

[29]  K. Yazaki,et al.  The multidrug and toxic compound extrusion (MATE) family in plants , 2014 .

[30]  Bo Hu,et al.  GSDS 2.0: an upgraded gene feature visualization server , 2014, Bioinform..

[31]  S. Luan,et al.  A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. , 2014, Molecular plant.

[32]  K. Shinozaki,et al.  The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat , 2014, Front. Plant Sci..

[33]  H. Peña-Cortés,et al.  VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. , 2014, Plant Cell Reports.

[34]  P. Trivedi,et al.  Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis , 2014, Scientific Reports.

[35]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[36]  S. Tabata,et al.  Title LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus , 2016 .

[37]  T. Shiina,et al.  Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana , 2013, Plant signaling & behavior.

[38]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[39]  Youn-sung Kim,et al.  A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. , 2012, The Biochemical journal.

[40]  Kazuhiro Sato,et al.  Acquisition of aluminium tolerance by modification of a single gene in barley , 2012, Nature Communications.

[41]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[42]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[43]  M. Moshelion,et al.  From organelle to organ: ZRIZI MATE-Type transporter is an organelle transporter that enhances organ initiation. , 2011, Plant & cell physiology.

[44]  G. Chang,et al.  Structure of a cation-bound multidrug and toxic compound extrusion transporter , 2010, Nature.

[45]  H. Nguyen,et al.  Two MATE proteins play a role in iron efficiency in soybean. , 2009, Journal of plant physiology.

[46]  R. Dixon,et al.  MATE Transporters Facilitate Vacuolar Uptake of Epicatechin 3′-O-Glucoside for Proanthocyanidin Biosynthesis in Medicago truncatula and Arabidopsis[C][W] , 2009, The Plant Cell Online.

[47]  T. Tsuchiya,et al.  Multidrug efflux transporters in the MATE family. , 2009, Biochimica et biophysica acta.

[48]  N. Yamaji,et al.  OsFRDL1 Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice1[OA] , 2008, Plant Physiology.

[49]  E. Barbier,et al.  Ethnobiology, socio-economics and management of mangrove forests: A review , 2008 .

[50]  K. Inui,et al.  Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). , 2008, Biochemical pharmacology.

[51]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[52]  K. Takeda,et al.  An aluminum-activated citrate transporter in barley. , 2007, Plant & cell physiology.

[53]  K. Yazaki,et al.  Accumulation and membrane transport of plant alkaloids. , 2007, Current Pharmaceutical Biotechnology.

[54]  D. Barron,et al.  The Arabidopsis MATE Transporter TT12 Acts as a Vacuolar Flavonoid/H+-Antiporter Active in Proanthocyanidin-Accumulating Cells of the Seed Coat[W] , 2007, The Plant Cell Online.

[55]  W. Gassmann,et al.  The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation1[OA] , 2007, Plant Physiology.

[56]  M. Hiasa,et al.  The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. , 2006, Trends in pharmacological sciences.

[57]  Z. Guo,et al.  Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity , 2005, Biologia Plantarum.

[58]  Milton H Saier,et al.  The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. , 2003, European journal of biochemistry.

[59]  A. Polle,et al.  Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. , 2002, Journal of experimental botany.

[60]  S. Luan,et al.  Functional Cloning and Characterization of a Plant Efflux Carrier for Multidrug and Heavy Metal Detoxification* , 2002, The Journal of Biological Chemistry.

[61]  Rolf Apweiler,et al.  Evaluation of methods for the prediction of membrane spanning regions , 2001, Bioinform..

[62]  G. Fink,et al.  Arabidopsis ALF5, a Multidrug Efflux Transporter Gene Family Member, Confers Resistance to Toxins , 2001, The Plant Cell Online.

[63]  A. Peeters,et al.  The TRANSPARENT TESTA12 Gene of Arabidopsis Encodes a Multidrug Secondary Transporter-like Protein Required for Flavonoid Sequestration in Vacuoles of the Seed Coat Endothelium , 2001, Plant Cell.

[64]  I. Paulsen,et al.  The multidrug efflux protein NorM is a prototype of a new family of transporters , 1999, Molecular microbiology.

[65]  Tohru Mizushima,et al.  NorM, a Putative Multidrug Efflux Protein, of Vibrio parahaemolyticus and Its Homolog in Escherichia coli , 1998, Antimicrobial Agents and Chemotherapy.

[66]  K. Ullrich,et al.  Specificity of transporters for 'organic anions' and 'organic cations' in the kidney. , 1994, Biochimica et biophysica acta.

[67]  OUP accepted manuscript , 2022, Genome Biology and Evolution.

[68]  Sangya Pundir,et al.  UniProt Protein Knowledgebase. , 2017, Methods in molecular biology.

[69]  A. Vuleta,et al.  How do plants cope with oxidative stress in nature? A study on the dwarf bearded iris (Iris pumila) , 2014, Acta Physiologiae Plantarum.

[70]  T. Shoji ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. , 2014, International review of cell and molecular biology.

[71]  K. Niehaus,et al.  Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. , 2011, Plant biology.

[72]  K. Kathiresan,et al.  Biology of mangroves and mangrove Ecosystems , 2001 .