Greedy Algorithms For The S hortest Common Superstring Th at Are Asymptotically Optimal

[1]  F. Frances Yao,et al.  Approximating shortest superstrings , 1997, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[2]  Tao Jiang,et al.  Rotations of Periodic Strings and Short Superstrings , 1996, J. Algorithms.

[3]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals , 1995, Theor. Comput. Sci..

[4]  Tao Jiang,et al.  Linear approximation of shortest superstrings , 1994, JACM.

[5]  Wojciech Szpankowski,et al.  A Generalized Suffix Tree and its (Un)expected Asymptotic Behaviors , 1993, SIAM J. Comput..

[6]  Esko Ukkonen,et al.  Approximate String-Matching over Suffix Trees , 1993, CPM.

[7]  Philippe Jacquet,et al.  Analysis of digital tries with Markovian dependency , 1991, IEEE Trans. Inf. Theory.

[8]  Nicole Fassbinder,et al.  Computational Molecular Biology: Sources and Methods for Sequence Analysis , 1989 .

[9]  W. Bains,et al.  A novel method for nucleic acid sequence determination. , 1988, Journal of theoretical biology.

[10]  Wojciech Szpankowski,et al.  The Evaluation of an Alternative Sum With Applications to the Analysis of Some Data Structures , 1988, Inf. Process. Lett..

[11]  B. Pittel Asymptotical Growth of a Class of Random Trees , 1985 .

[12]  David Maier,et al.  On Finding Minimal Length Superstrings , 1980, J. Comput. Syst. Sci..

[13]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[14]  Clifford Stein,et al.  Short Superstrings and the Structure of Overlapping Strings , 1995, J. Comput. Biol..

[15]  C. Stein,et al.  A 2-3/4-Approximation Algorithm for the Shortest Superstring Problem , 1994 .

[16]  P. Shields Entropy and Prefixes , 1992 .

[17]  Donald William Drury,et al.  The art of computer programming , 1983 .

[18]  W. N. Hargreaves-Mawdsley On The Height , 1967 .