Collapse of Landau levels in gated graphene structures.

We describe a new regime of magnetotransport in two-dimensional electron systems in the presence of a narrow potential barrier. In such systems, the Landau level states, which are confined to the barrier region in strong magnetic fields, undergo a deconfinement transition as the field is lowered. Transport measurements on a top-gated graphene device are presented. Shubnikov-de Haas (SdH) oscillations, observed in the unipolar regime, are found to abruptly disappear when the strength of the magnetic field is reduced below a certain critical value. This behavior is explained by a semiclassical analysis of the transformation of closed cyclotron orbits into open, deconfined trajectories.