Geographically Comprehensive Assessment of Salt-Meadow Vegetation-Elevation Relations Using LiDAR

[1]  The effect of rates of sedimentation and tidal submersion regimes on the growth of salt marsh plants , 2001 .

[2]  L. Boorman Salt marshes – present functioning and future change , 1999 .

[3]  M. Sykes,et al.  Climate change threats to plant diversity in Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Kirwan,et al.  Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island, British Columbia , 2008 .

[5]  John M. Melack,et al.  Characterizing patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations , 2007 .

[6]  R. Macarthur The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture , 2005 .

[7]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[8]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[9]  Bibit Halliday Traut,et al.  The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California , 2005 .

[10]  Kai Jensen,et al.  Plant Species Responses to an Elevational Gradient in German North Sea Salt Marshes , 2010, Wetlands.

[11]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[12]  D. Cahoon,et al.  Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise , 2009, Proceedings of the National Academy of Sciences.

[13]  L. Vierling,et al.  Lidar: shedding new light on habitat characterization and modeling , 2008 .

[14]  Björn Nilsson,et al.  National Inventory of Landscapes in Sweden (NILS)—scope, design, and experiences from establishing a multiscale biodiversity monitoring system , 2011, Environmental monitoring and assessment.

[15]  S. Long,et al.  An assessment of saltmarsh erosion in Essex, England, with reference to the Dengie Peninsula , 1986 .

[16]  Peter G. Appleby,et al.  Accretion of a New England (U.S.A.) Salt Marsh in Response to Inlet Migration, Storms, and Sea-level Rise , 1997 .

[17]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[18]  S. Pennings,et al.  Salt Marsh Plant Zonation: The Relative Importance of Competition and Physical Factors , 1992 .

[19]  J. Bartholdy,et al.  Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula – the Danish Wadden Sea , 2004 .

[20]  Anuja Parikh,et al.  Ecology of a mediterranean-climate estuarine wetland at Carpinteria, California: plant distributions and soil salinity in the upper marsh , 1990 .

[21]  Mark D. Bertness,et al.  Plant zonation in low‐latitude salt marshes: disentangling the roles of flooding, salinity and competition , 2005 .

[22]  K. Dijkema,et al.  Vertical accretion and profile changes in abandoned man-made tidal marshes in the Dollard Estuary, The Netherlands , 1998 .

[23]  Donald R. Cahoon,et al.  Relationships among Marsh Surface Topography, Hydroperiod, and Soil Accretion in a Deteriorating Louisiana Salt Marsh , 1995 .

[24]  James T. Morris,et al.  Eco-Physiological Controls on the Productivity of Spartina Alterniflora Loisel , 2002 .

[25]  M. Weinstein,et al.  Concepts and Controversies in Tidal Marsh Ecology , 2000, Springer Netherlands.

[26]  C. Rosenzweig,et al.  Sea level rise projections for current generation CGCMs based on the semi‐empirical method , 2008 .

[27]  P. Vestergaard Response to mowing of coastal brackish meadow plant communities along an elevational gradient , 1994 .

[28]  Y. Waisel Biology of halophytes , 1972 .

[29]  K. Madsen Recent and Future Climatic Changes of the North Sea and the Baltic Sea , 2011 .

[30]  Igor V. Florinsky,et al.  Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale , 2000, Int. J. Geogr. Inf. Sci..

[31]  M. B. Machmuller,et al.  Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services , 2009 .

[32]  Mark M. Brinson,et al.  RESPONSE OF WETLANDS TO RISING SEA LEVEL IN THE LOWER COASTAL PLAIN OF NORTH CAROLINA , 1995 .

[33]  J. Nielsen,et al.  Vertical Growth of a Young Back Barrier Salt Marsh, Skallingen, SW Denmark , 2002 .

[34]  L. Boorman The environmental consequences of climatic change on British salt marsh vegetation , 1992, Wetlands Ecology and Management.

[35]  Glenn R. Guntenspergen,et al.  Accelerated sea‐level rise – a response to Craft et al. , 2009 .

[36]  P. V. Sundareshwar,et al.  RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL , 2002 .

[37]  Gregory D. Williams,et al.  Californian Salt-Marsh Vegetation: An Improved Model of Spatial Pattern , 1999, Ecosystems.

[38]  David A. Adams,et al.  Factors Influencing Vascular Plant Zonation in North Carolina Salt Marshes , 1963 .

[39]  Jonathan Clough,et al.  SLR and ecosystem services: a response to Kirwan and Guntenspergen , 2009 .

[40]  Thiago F. Rangel,et al.  Towards an integrated computational tool for spatial analysis in macroecology and biogeography , 2006 .

[41]  M. Kelly,et al.  Salt marsh vegetation response to edaphic and topographic changes from upland sedimentation in a Pacific estuary , 2006, Wetlands.

[42]  A. Hastings,et al.  Use of lidar to study changes associated with Spartina invasion in San Francisco bay marshes , 2006 .

[43]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[44]  J. Bartholdy,et al.  Exposed salt marsh morphodynamics: An example from the Danish Wadden Sea , 2007 .

[45]  Iris Möller,et al.  Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change , 2002, Journal of Coastal Research.

[46]  A. Murray,et al.  Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene — Reflection of local sea level changes? The Wadden Sea, Denmark , 2007 .

[47]  D. Wal,et al.  Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK) , 2004 .

[48]  J. Callaway,et al.  Relationship between topographic heterogeneity and vegetation patterns in a Californian salt marsh , 2004 .

[49]  J. Doody 1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) , 2008 .

[50]  B. E. Mahall,et al.  The Ecotone Between Spartina Foliosa Trin. and Salicornia Virginica L. in Salt Marshes of Northern San Francisco Bay: II. Soil Water and Salinity , 1976 .

[51]  P. Vestergaard Possible impact of sea-level rise on some habitat types at the Baltic coast of Denmark , 1997 .

[52]  Brody Sandel,et al.  Scale as a lurking factor: incorporating scale-dependence in experimental ecology , 2009 .

[53]  Aslak Grinsted,et al.  Reconstructing sea level from paleo and projected temperatures 200 to 2100AD , 2009 .

[54]  J. Svenning,et al.  Limited filling of the potential range in European tree species , 2004 .

[55]  Ling Bian,et al.  Scale Dependencies of Vegetation and Topography in a Mountainous Environment of Montana , 1993 .

[56]  P. W. French Coastal and Estuarine Management , 1998 .

[57]  J. Bakker,et al.  The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh , 2002 .

[58]  S. Levin The problem of pattern and scale in ecology , 1992 .