Ultra-high-Q resonances in plasmonic metasurfaces

Plasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absorption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.

[1]  R. J. Bell,et al.  Generalized Laws of Refraction and Reflection , 1969 .

[2]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[3]  Peter W. E. Smith,et al.  Bistable Fabry-Perot resonator (A) , 1977 .

[4]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[5]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[6]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[7]  S. Arnold,et al.  Excitation of resonances of microspheres on an optical fiber. , 1995, Optics letters.

[8]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[9]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[10]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[11]  J E Heebner,et al.  Enhanced all-optical switching by use of a nonlinear fiber ring resonator. , 1999, Optics letters.

[12]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[13]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[14]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[15]  Jean-Marc Luck,et al.  Why shape matters , 2002 .

[16]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[17]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[18]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[19]  A. Schweinsberg,et al.  Optical transmission characteristics of fiber ring resonators , 2004, IEEE Journal of Quantum Electronics.

[20]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[21]  Vadim A. Markel LETTER TO THE EDITOR: Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres , 2005 .

[22]  George C. Schatz,et al.  Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths , 2006 .

[23]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[24]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[25]  T. Fry Size matters. , 2007, Community practitioner : the journal of the Community Practitioners' & Health Visitors' Association.

[26]  H. Drew,et al.  Optical plasmonic resonances in split-ring resonator structures: an improved LC model. , 2008, Optics express.

[27]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[28]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[29]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[30]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[31]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[32]  L. Senelick It (review) , 2008 .

[33]  P. Waldron,et al.  Extracting coupling and loss coefficients from a ring resonator. , 2009, Optics express.

[34]  Study of plasmon resonance in a gold nanorod with an LC circuit model. , 2009, Optics express.

[35]  Vincenzo Giannini,et al.  Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas , 2009 .

[36]  V. Kravets,et al.  Sensitivity of collective plasmon modes of gold nanoresonators to local environment. , 2010, Optics letters.

[37]  M. Kuittinen,et al.  Particle plasmon resonances in L-shaped gold nanoparticles. , 2010, Optics express.

[38]  Andrea M. Armani,et al.  Ultimate quality factor of silica microtoroid resonant cavities , 2010 .

[39]  W. Barnes,et al.  Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate , 2010, 1007.4428.

[40]  L. Novotný,et al.  Antennas for light , 2011 .

[41]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[42]  Jingjun Xu,et al.  Nanostructured Plasmonic Medium for Terahertz Bandwidth All‐Optical Switching , 2011, Advanced materials.

[43]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[44]  B. Maes,et al.  Coupling Bright and Dark Plasmonic Lattice Resonances , 2011, 1108.1620.

[45]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[46]  Xudong Fan,et al.  Optical ring resonators for biochemical and chemical sensing , 2011, Analytical and bioanalytical chemistry.

[47]  A. Degiron,et al.  Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles , 2012 .

[48]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[49]  A. Berrier,et al.  Collective resonances in plasmonic crystals: Size matters , 2012, 1305.3134.

[50]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[51]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[52]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[53]  Steven G. Johnson,et al.  Observation of trapped light within the radiation continuum , 2013, Nature.

[54]  Robert P. H. Chang,et al.  Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays , 2014 .

[55]  Dario Gerace,et al.  Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million , 2014 .

[56]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[57]  I. Al-Naib,et al.  Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces , 2014, 1406.7194.

[58]  Raymond Heatherly,et al.  Size matters: How population size influences genotype-phenotype association studies in anonymized data , 2014, J. Biomed. Informatics.

[59]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[60]  Martin Wegener,et al.  Broadband terahertz generation from metamaterials. , 2014, Nature communications.

[61]  R. Boyd,et al.  Quantifying the impact of proximity error correction on plasmonic metasurfaces [Invited] , 2015 .

[62]  O. Martin,et al.  Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications. , 2015, ACS nano.

[63]  V. Kravets,et al.  Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. , 2015, Nano letters.

[64]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[65]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.

[66]  Robert W Boyd,et al.  Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations. , 2016, Optics express.

[67]  W. Barnes Particle plasmons: Why shape matters , 2016, 1609.04184.

[68]  Michal Lipson,et al.  Breaking the Loss Limitation of On-chip High-confinement Resonators , 2016, 1609.08699.

[69]  Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces , 2016, 1607.06469.

[70]  W. Barnes,et al.  Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers , 2016 .

[71]  William P. Wardley,et al.  Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays , 2017 .

[72]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[73]  R. Won View from... SPP8: The rise of plasmonic metasurfaces , 2017 .

[74]  Susumu Noda,et al.  Photonic crystal nanocavity with a Q factor exceeding eleven million. , 2017, Optics express.

[75]  Alexander Krasnok,et al.  Nonlinear metasurfaces: a paradigm shift in nonlinear optics , 2017 .

[76]  S. Karpov,et al.  Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths , 2017 .

[77]  A. Moilanen,et al.  Lasing in dark and bright modes of a finite-sized plasmonic lattice , 2016, Nature Communications.

[78]  Tal Ellenbogen,et al.  Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays. , 2017, Physical review letters.

[79]  V. Kravets,et al.  Plasmonic Surface Lattice Resonances: A Review of Properties and Applications , 2018, Chemical reviews.

[80]  A. Manjavacas,et al.  Finite-size effects on periodic arrays of nanostructures , 2018, Journal of Physics: Photonics.

[81]  Duk-Yong Choi,et al.  Imaging-based molecular barcoding with pixelated dielectric metasurfaces , 2018, Science.

[82]  Yuan Hsing Fu,et al.  Directional lasing in resonant semiconductor nanoantenna arrays , 2018, Nature Nanotechnology.

[83]  Sheng Liu,et al.  An all-dielectric metasurface as a broadband optical frequency mixer , 2017, Nature Communications.

[84]  S. Baur,et al.  Hybridization of Lattice Resonances. , 2018, ACS nano.

[85]  Bong-Kiun Kaang,et al.  Interregional synaptic maps among engram cells underlie memory formation , 2018, Science.

[86]  Markku Kuittinen,et al.  Less Is More: Enhancement of Second-Harmonic Generation from Metasurfaces by Reduced Nanoparticle Density. , 2018, Nano letters.

[87]  Robert W. Boyd,et al.  Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays , 2018, 1802.10383.

[88]  V. Kravets,et al.  Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. , 2017, Biosensors & bioelectronics.

[89]  C. Rockstuhl,et al.  An electromagnetic multipole expansion beyond the long-wavelength approximation , 2017, 1701.00755.

[90]  E. Geluk,et al.  Enhanced Quality Factors of Surface Lattice Resonances in Plasmonic Arrays of Nanoparticles , 2019, Advanced Optical Materials.

[91]  Cedrik Meier,et al.  Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review , 2019, Advanced Photonics.

[92]  T. Odom,et al.  Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices. , 2019, Accounts of chemical research.

[93]  Volkan Cevher,et al.  Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces , 2019, Nature Photonics.

[94]  T. Zentgraf,et al.  Strong Nonlinear Optical Activity Induced by Lattice Surface Modes on Plasmonic Metasurface. , 2019, Nano letters.

[95]  Juntao Li,et al.  High-Q Quasibound States in the Continuum for Nonlinear Metasurfaces. , 2019, Physical review letters.

[96]  Robert W. Boyd,et al.  Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays , 2019, Journal of the Optical Society of America B.

[97]  Robert W. Boyd,et al.  Multi-resonant high-Q plasmonic metasurfaces. , 2019, Nano letters.

[98]  Paul J. M. Smeets,et al.  Ultranarrow plasmon resonances from annealed nanoparticle lattices , 2020, Proceedings of the National Academy of Sciences.

[99]  Emerging material systems for integrated optical Kerr frequency combs , 2020, Advances in Optics and Photonics.

[100]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light, science & applications.

[101]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light: Science & Applications.

[102]  Sergey Kruk,et al.  Subwavelength dielectric resonators for nonlinear nanophotonics , 2020, Science.