Microchannel plate fabrication using glass capillary arrays with Atomic Layer Deposition films for resistance and gain

Microchannel plates (MCPs) have been used for many years in space flight instrumentation as fast, lightweight electron multipliers. A new MCP fabrication method combines a glass substrate composed of hollow glass capillary arrays with thin film coatings to provide the resistive and secondary electron emissive properties. Using this technique, the gain, resistance, and glass properties may be chosen independently. Large‐area MCPs are available at moderate cost. Secondary emission films of Al2O3 and MgO provide sustained high gain as charge is extracted from the MCP. Long lifetimes are possible, and a total extracted charge of 7 C/cm2 has been demonstrated. Background rates are low because the glass substrate has little radioactive potassium 40. Curved MCPs are easily fabricated with this technique to suit instrument symmetries, simplifying secondary electron steering and smoothing azimuthal efficiency.

[1]  Michael R. Foley,et al.  Development of polycapillary x-ray optics for synchrotron spectroscopy , 2015, SPIE Optical Engineering + Applications.

[2]  Joseph M. Renaud,et al.  Pilot production & commercialization of LAPPD™ , 2015 .

[3]  Joseph M. Renaud,et al.  Pilot production & commercialization of LAPPD TM , 2015 .

[4]  M. Düren,et al.  Improved lifetime of microchannel-plate PMTs , 2014 .

[5]  James Milnes,et al.  Extended lifetime MCP-PMTs: Characterisation and lifetime measurements of ALD coated microchannel plates, in a sealed photomultiplier tube , 2013 .

[6]  L. Kistler,et al.  In-flight calibration of the Cluster/CODIF sensor , 2013 .

[7]  Jason McPhate,et al.  Performance characteristics of atomic layer functionalized microchannel plates , 2013, Optics & Photonics - Optical Engineering + Applications.

[8]  Anil U. Mane,et al.  Nanostructured composite thin films with tailored resistivity by atomic layer deposition , 2013, Optics & Photonics - NanoScience + Engineering.

[9]  W. Tong,et al.  (Invited) Synthesis, Characterization, and Application of Tunable Resistance Coatings Prepared by Atomic Layer Deposition , 2013 .

[10]  A. Elagin,et al.  Invited article: a test-facility for large-area microchannel plate detector assemblies using a pulsed sub-picosecond laser. , 2013, The Review of scientific instruments.

[11]  A. Elagin,et al.  Synthesis , Characterization , and Application of Tunable Resistance Coatings Prepared by Atomic Layer Deposition , 2013 .

[12]  H. Frisch,et al.  Systems-Level Characterization of Microchannel Plate Detector Assemblies, using a Pulsed sub-Picosecond Laser , 2012 .

[13]  Anil U. Mane,et al.  Secondary Electron Yield of Emissive Materials for Large-Area Micro-Channel Plate Detectors: Surface Composition and Film Thickness Dependencies , 2012 .

[14]  Oswald H. W. Siegmund,et al.  A novel atomic layer deposition method to fabricate economical and robust large area microchannel plates , 2011, Defense + Commercial Sensing.

[15]  H. Frisch,et al.  Comparison of candidate secondary electron emission materials , 2010 .

[16]  J. Jost,et al.  The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories , 2008 .

[17]  Michael W. Davis,et al.  ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto–Kuiper Belt Mission , 2007, 0709.4279.

[18]  G. Fraser,et al.  Photon counting with small pore microchannel plates , 2007 .

[19]  T. Ohshima,et al.  Lifetime of MCP-PMT , 2006 .

[20]  P. Feldman,et al.  Alice: The rosetta Ultraviolet Imaging Spectrograph , 2006, astro-ph/0603585.

[21]  J. Howorth,et al.  Picosecond time response characteristics of microchannel plate PMT detectors , 2005, International Congress on High-Speed Imaging and Photonics.

[22]  R. G. Downing,et al.  Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B doping , 2005 .

[23]  K. Inami,et al.  MCP-PMT timing property for single photons , 2004 .

[24]  John V. Vallerga,et al.  Thermal dependence of electrical characteristics of micromachined silica microchannel plates , 2004 .

[25]  Marcos Bavdaz,et al.  X-ray focusing with Wolter microchannel plate optics , 2002 .

[26]  G. Fraser,et al.  Microchannel plate resistance at cryogenic temperatures , 2000 .

[27]  R. S. Turley,et al.  The Extreme Ultraviolet Imager Investigation for the IMAGE Mission , 2000 .

[28]  Oswald H. W. Siegmund,et al.  In-flight performance of the SUMER microchannel plate detectors , 1998, Optics & Photonics.

[29]  S. M. Krimigis,et al.  The Ultra-Low-Energy Isotope Spectrometer (ULEIS) for the ACE spacecraft , 1998 .

[30]  J. Rouzaud,et al.  THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT , 1997 .

[31]  James F. Pearson,et al.  MICROCHANNEL PLATE OPERATION AT HIGH COUNT RATES : NEW RESULTS , 1996 .

[32]  F. Gliem,et al.  The solar WIND and suprathermal ion composition investigation on the WIND spacecraft , 1995 .

[33]  Oswald H. W. Siegmund,et al.  Berkeley EUV spectrometer microchannel plate detectors for ORFEUS , 1993, Optics & Photonics.

[34]  J. Gethyn Timothy,et al.  Microchannel plate modal gain variations with temperature , 1993 .

[35]  R. Soave,et al.  Secondary electron yield of SiO2 and Si3N4 thin films for continuous dynode electron multipliers , 1991 .

[36]  Carlo G. Pantano,et al.  Formation and behavior of surface layers on electron emission glasses , 1990 .

[37]  O. H. W. Siegmund,et al.  Preconditioning Of Microchannel Plate Stacks , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[38]  John V. Vallerga,et al.  ALEXIS: An Ultrasoft X-Ray Monitor Experiment Using Miniature Satellite Technology , 1988, Optics & Photonics.

[39]  James F. Pearson,et al.  Advances In Microchannel Plate Detectors , 1988, Optics & Photonics.

[40]  John V. Vallerga,et al.  Background events in microchannel plates , 1988 .

[41]  James F. Pearson,et al.  Variation of microchannel plate resistance with temperature and applied voltage , 1987 .

[42]  K. Oba,et al.  Characteristics of the Newly Developed MCP and Its Assembly , 1985, IEEE Transactions on Nuclear Science.

[43]  K. A. Smith,et al.  Absolute and angular efficiencies of a microchannel-plate position-sensitive detector , 1984 .

[44]  K. Oba,et al.  Current Status of the Micro Channel Plate , 1984, IEEE Transactions on Nuclear Science.

[45]  J. Wiza Microchannel plate detectors , 1979 .

[46]  G. E. Hill,et al.  Secondary Electron Emission and Compositional Studies on Channel Plate Glass Surfaces , 1976 .

[47]  J. Renaud,et al.  A High Resolution, High Sensitivity Channel Plate Image Intensifier for Use in Particle Spectrographs , 1971 .