Arithmetical datatypes with true fractions

We consider several novel congruences on the signature of meadows with the aim to survey different notions of fractions. In particular we suggest a notion of “true fraction”.

[1]  Jan A. Bergstra,et al.  Transformation of fractions into simple fractions in divisive meadows , 2015, J. Appl. Log..

[2]  Jesper Carlström,et al.  Partiality and Choice : Foundational Contributions , 2005 .

[3]  Martha Isabel Fandiño Pinilla,et al.  FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS , 2016, Journal Human Research in Rehabilitation.

[4]  S. dos Reis Tiago,et al.  Perspex Machine XIII: Construction of the Transcomplex Numbers from the Complex Numbers , 2014 .

[5]  Jan A. Bergstra,et al.  The rational numbers as an abstract data type , 2007, JACM.

[6]  Jan A. Bergstra,et al.  Inversive meadows and divisive meadows , 2009, J. Appl. Log..

[7]  Yuichi Komori,et al.  Free Algebras over All Fields and Pseudo-fields , 1975 .

[8]  Jan A. Bergstra,et al.  Equations for formally real meadows , 2013, J. Appl. Log..

[9]  Jesper Carlström,et al.  Wheels – on division by zero , 2004, Mathematical Structures in Computer Science.

[10]  Jan A. Bergstra,et al.  Division by zero in non-involutive meadows , 2014, J. Appl. Log..

[11]  Jan A. Bergstra,et al.  Fracpairs and fractions over a reduced commutative ring , 2014, 1411.4410.

[12]  Hiroakira Ono,et al.  Equational theories and universal theories of fields , 1983 .

[13]  Jan A. Bergstra,et al.  Division by Zero in Common Meadows , 2014, Software, Services, and Systems.

[14]  Inge Bethke,et al.  The structure of finite meadows , 2009, J. Log. Algebraic Methods Program..

[15]  Jan A. Bergstra,et al.  Note on paraconsistency and reasoning about fractions , 2014, J. Appl. Non Class. Logics.

[16]  Robert S. Siegler,et al.  Why Is Learning Fraction and Decimal Arithmetic so Difficult , 2015 .

[17]  James Anderson,et al.  Construction of the transcomplex numbersfrom the complex numbers , 2014 .

[18]  Jan A. Bergstra,et al.  Division Safe Calculation in Totalised Fields , 2008, Theory of Computing Systems.

[19]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[20]  Jan A. Bergstra,et al.  Universality of Univariate Mixed Fractions in Divisive Meadows , 2017, ArXiv.

[21]  Jan A. Bergstra,et al.  Meadows and the equational specification of division , 2009, Theor. Comput. Sci..

[22]  Inge Bethke,et al.  The initial meadows , 2008, The Journal of Symbolic Logic.