We present the design, fabrication and characterization of efficient fiber-to-chip grating couplers on a Germanium-on-Silicon (Ge-on-Si) and Germanium-on-silicon-on-insulator (Ge-on-SOI) platform in the 5 μm wavelength range. The best grating couplers on Ge-on-Si and Ge-on-SOI have simulated coupling efficiencies of -4 dB (40%) with a 3 dB bandwidth of 180 nm and -1.5 dB (70%) with a 3 dB bandwidth of 200 nm, respectively. Experimentally, we show a maximum efficiency of -5 dB (32%) and a 3 dB bandwidth of 100 nm for Ge-on-Si grating couplers, and a -4 dB (40%) efficiency with a 3 dB bandwidth of 180 nm for Ge-on-SOI couplers. © 2017 Optical Society of America OCIS codes: (050.2770) Gratings; (130.3120) Integrated optics devices. References and links 1. P. A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998). 2. J. Hodgkinson and R. P. Tatam, “Optical gas sensing : a review,” Meas. Sci. Technol. 24(1), 012004 (2012). 3. M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared siliconon-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016). 4. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010). 5. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012). 6. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010). 7. J. M. Ramirez, V. Vakarin, C. Gilles, J. Frigerio, A. Ballabio, P. Chaisakul, X. Le Roux, C. Alonso-Ramos, G. Maisons, L. Vivien, M. Carras, G. Isella, and D. Marris-Morini, “Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics,” Opt. Lett. 42(1), 105–108 (2017). 8. L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-Infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23(25), 32202–32214 (2015). 9. R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010). 10. A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. S. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, and T. Van Opstal, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the midinfrared,” Opt. Express 22(23), 28479–28488 (2014). 11. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013). 12. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013). 13. P. Barritault, M. Brun, P. Labeye, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5 μm,” Opt. Express 23(20), 26168–26181 (2015). 14. A. Koshkinbayeva, P. Barritault, S. Ortiz, S. Boutami, M. Brun, J. Hartmann, P. Brianceau, O. Lartigue, F. Boulila, R. Orobtchouk, and P. Labeye, “Impact of non-central input in NxM mid-IR arrayed waveguide gratings integrated on Si,” IEEE Photon. Technol. Lett. 28(20), 2191–2194 (2016). 15. S. Radosavljevic, B. Kuyken, and G, Roelkens, “A fiber-to-chip grating goupler for the Ge-on-Si platform at 5 μm wavelength,” ECIO Proceedings (to be published). 16. M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27(10), 1040–1043 (2015). Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 19034 #295921 https://doi.org/10.1364/OE.25.019034 Journal © 2017 Received 12 May 2017; revised 24 Jun 2017; accepted 11 Jul 2017; published 28 Jul 2017 17. C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. PenadÃl’s, C. G. Littlejohns, A. Z. Khokhar, D. PérezGalacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016). 18. J. Favreau, C. Durantin, J. Fédéli, S. Boutami, and G. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016). 19. Z. Cheng, X. Chen, C. Y. Wong, K. X. Christy, K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for Silicon-on-Saipphire waveguides,” IEEE Photon. J. 4(1), 104–113 (2012). 20. M. Brun, P. Labeye, G. Grand, J. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22(1), 508–518 (2014). 21. B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016). 22. B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Lett. 22(20), 23990–24003 (2014). 23. R. Shankar, I. Bulu, and M. Lonĉar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the midinfrared,” Appl. Phys. Lett. 102(5), 051108 (2013). 24. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, and L. J. Mawst, “Quantum cascade laser on silicon,” Optica 3(5), 545–551 (2016). 25. B. Wang, J .H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and siliconon-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005). 26. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). 27. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010). 28. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010). 29. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011). 30. C. Li, H. Zhang, M. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express 21(7), 7868–7874 (2013). 31. http://www.spectralcalc.com/spectral_browser/db_intensity.php 32. https://www.thorlabs.com/navigation.cfm.
[1]
T. Baehr‐Jones,et al.
Silicon-on-sapphire integrated waveguides for the mid-infrared.
,
2009,
Optics express.
[2]
R. Loo,et al.
Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared
,
2013
.
[3]
Mathieu Carras,et al.
Low loss SiGe graded index waveguides for mid-IR applications.
,
2014,
Optics express.
[4]
Milos Nedeljkovic,et al.
Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared.
,
2014,
Optics express.
[5]
G. Nordin,et al.
Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides
,
2005,
IEEE Photonics Technology Letters.
[6]
Mathieu Carras,et al.
Design, fabrication and characterization of an AWG at 4.5 µm.
,
2015,
Optics express.
[7]
Pavel Cheben,et al.
Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation.
,
2016,
Optics letters.
[8]
Salim Boutami,et al.
Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides
,
2016,
SPIE OPTO.
[9]
Ke Xu,et al.
Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator
,
2012,
IEEE Photonics Journal.
[10]
Marko Loncar,et al.
Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared
,
2013,
10th International Conference on Group IV Photonics.
[11]
Jun Ye,et al.
Mid-infrared Fourier transform spectroscopy with a broadband frequency comb.
,
2010,
Optics express.
[12]
R. Soref.
Mid-infrared photonics in silicon and germanium
,
2010
.
[13]
Mathieu Carras,et al.
Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics.
,
2017,
Optics letters.
[14]
Gunther Roelkens,et al.
Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared.
,
2014,
Optics express.
[15]
Andre Delage,et al.
Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip
,
2016,
IEEE Photonics Technology Letters.
[16]
A. Khokhar,et al.
Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared.
,
2016,
Optics letters.
[17]
K. Gylfason,et al.
An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics.
,
2011,
Optics express.
[18]
T. Krauss,et al.
Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides
,
2007,
Journal of Lightwave Technology.
[19]
R. Tatam,et al.
Optical gas sensing: a review
,
2012
.
[20]
Ke Xu,et al.
Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides
,
2012,
IEEE Photonics Journal.
[21]
H. Tsang,et al.
Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers
,
2010,
IEEE Photonics Technology Letters.
[22]
R. Loo,et al.
Germanium-on-Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers
,
2013,
IEEE Photonics Technology Letters.
[23]
William W. Bewley,et al.
Quantum cascade laser on silicon
,
2016
.