The Structure of Linear Codes of Constant Weight
暂无分享,去创建一个
[1] Harold N. Ward. An Introduction to Divisible Codes , 1999, Des. Codes Cryptogr..
[2] Jay A. Wood. Duality for modules over finite rings and applications to coding theory , 1999 .
[3] H. F. Mattson,et al. Error-Correcting Codes , 1971 .
[4] Gary L. Mullen,et al. Finite Fields: Theory, Applications and Algorithms , 1994 .
[5] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[6] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[7] Jay A. Wood,et al. Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.
[8] Jean Gordon,et al. An Elementary Proof of the MacWilliams Theorem on Equivalence of Codes , 1978, Inf. Control..
[9] A. Bonisoli. Every equidistant linear code is a sequence of dual Hamming codes , 1984 .
[10] Jay A. Wood,et al. Weight Functions and the Extension Theorem for Linear Codes over Finite Rings , 1999 .
[11] Jay A. Wood. Extension Theorems for Linear Codes over Finite Rings , 1997, AAECC.
[12] A. Robert Calderbank,et al. Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.
[13] C. Carlet. One-weight Z4-linear Codes , 2000 .
[14] Jessie Macwilliams. Error-correcting codes for multiple-level transmission , 1961 .
[15] B. R. McDonald. Finite Rings With Identity , 1974 .
[16] Johannes Buchmann,et al. Coding Theory, Cryptography and Related Areas , 2000, Springer Berlin Heidelberg.