The Structure of Linear Codes of Constant Weight

In this paper we determine completely the structure of linear codes over Z/NZ of constant weight. Namely, we determine exactly which modules underlie linear codes of constant weight, and we describe the coordinate functionals involved. The weight functions considered are: Hamming weight, Lee weight, and Euclidean weight. We present a general uniqueness theorem for virtual linear codes of constant weight. Existence is settled on a case by case basis.

[1]  Harold N. Ward An Introduction to Divisible Codes , 1999, Des. Codes Cryptogr..

[2]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[3]  H. F. Mattson,et al.  Error-Correcting Codes , 1971 .

[4]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .

[5]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  Jay A. Wood,et al.  Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.

[8]  Jean Gordon,et al.  An Elementary Proof of the MacWilliams Theorem on Equivalence of Codes , 1978, Inf. Control..

[9]  A. Bonisoli Every equidistant linear code is a sequence of dual Hamming codes , 1984 .

[10]  Jay A. Wood,et al.  Weight Functions and the Extension Theorem for Linear Codes over Finite Rings , 1999 .

[11]  Jay A. Wood Extension Theorems for Linear Codes over Finite Rings , 1997, AAECC.

[12]  A. Robert Calderbank,et al.  Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.

[13]  C. Carlet One-weight Z4-linear Codes , 2000 .

[14]  Jessie Macwilliams Error-correcting codes for multiple-level transmission , 1961 .

[15]  B. R. McDonald Finite Rings With Identity , 1974 .

[16]  Johannes Buchmann,et al.  Coding Theory, Cryptography and Related Areas , 2000, Springer Berlin Heidelberg.