A high-bias, low-variance introduction to Machine Learning for physicists

[1]  Jens Eisert,et al.  Reinforcement learning decoders for fault-tolerant quantum computation , 2018, Mach. Learn. Sci. Technol..

[2]  Huichao Song,et al.  Applications of deep learning to relativistic hydrodynamics , 2018, Physical Review Research.

[3]  Ronald Davis,et al.  Neural networks and deep learning , 2017 .

[4]  T. Tohyama,et al.  Characterization of photoexcited states in the half-filled one-dimensional extended Hubbard model assisted by machine learning , 2019, 1901.07900.

[5]  Shotaro Shiba Funai,et al.  Thermodynamics and Feature Extraction by Machine Learning , 2018, Physical Review Research.

[6]  Mauro Paternostro,et al.  Supervised learning of time-independent Hamiltonians for gate design , 2018, New Journal of Physics.

[7]  Andrew M. Saxe,et al.  High-dimensional dynamics of generalization error in neural networks , 2017, Neural Networks.

[8]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[9]  Shikha Verma,et al.  Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2019, Vikalpa: The Journal for Decision Makers.

[10]  Stefan Steinerberger,et al.  Fast Interpolation-based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data , 2017, Nature Methods.

[11]  Pankaj Mehta,et al.  The Minimum Environmental Perturbation Principle: A New Perspective on Niche Theory , 2019, bioRxiv.

[12]  Jun-Jie Chen,et al.  Manipulation of Spin Dynamics by Deep Reinforcement Learning Agent. , 2019 .

[13]  Timo Hyart,et al.  Machine learning assisted measurement of local topological invariants , 2019, 1901.03346.

[14]  Michael Wilson,et al.  Machine learning determination of dynamical parameters: The Ising model case , 2018, Physical Review B.

[15]  Roger G. Melko,et al.  Reconstructing quantum states with generative models , 2018, Nature Machine Intelligence.

[16]  X. Wang,et al.  Spin-qubit noise spectroscopy from randomized benchmarking by supervised learning , 2018, Physical Review A.

[17]  Tom Rudelius Learning to inflate. A gradient ascent approach to random inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  B. Nord,et al.  DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with Deep Neural Networks , 2018, Astron. Comput..

[19]  J. Rottler,et al.  Correlations in the shear flow of athermal amorphous solids: a principal component analysis , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[20]  Christoph Becker,et al.  Identifying quantum phase transitions using artificial neural networks on experimental data , 2018, Nature Physics.

[21]  Gregor Kasieczka,et al.  QCD or what? , 2018, SciPost Physics.

[22]  Rafael Chaves,et al.  Machine Learning Nonlocal Correlations. , 2018, Physical review letters.

[23]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[24]  Pankaj Mehta,et al.  Glassy Phase of Optimal Quantum Control. , 2018, Physical review letters.

[25]  Thomas R. Bromley,et al.  Batched quantum state exponentiation and quantum Hebbian learning , 2018, Quantum Mach. Intell..

[26]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[27]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2018, npj Quantum Information.

[28]  N. Maskara,et al.  Advantages of versatile neural-network decoding for topological codes , 2018, Physical Review A.

[29]  Yan Lu,et al.  Deep convolutional neural networks for eigenvalue problems in mechanics , 2018, International Journal for Numerical Methods in Engineering.

[30]  Jacob M. Taylor,et al.  Machine learning techniques for state recognition and auto-tuning in quantum dots , 2017, npj Quantum Information.

[31]  Simone Severini,et al.  Experimental learning of quantum states , 2017, Science Advances.

[32]  Michael I. Jordan,et al.  First-order methods almost always avoid saddle points: The case of vanishing step-sizes , 2019, NeurIPS.

[33]  S. Lloyd,et al.  Quantum gradient descent and Newton’s method for constrained polynomial optimization , 2016, New Journal of Physics.

[34]  Partha P. Mitra,et al.  Critical Behavior and Universality Classes for an Algorithmic Phase Transition in Sparse Reconstruction , 2015, Journal of Statistical Physics.

[35]  Peter Gerstoft,et al.  Machine Learning in Seismology: Turning Data into Insights , 2018, Seismological Research Letters.

[36]  Vladimir V. Mazurenko,et al.  Supervised learning approach for recognizing magnetic skyrmion phases , 2018, Physical Review B.

[37]  Marin Bukov,et al.  Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator , 2018, Physical Review B.

[38]  H. Puszkarski,et al.  Ferromagnetic resonance in thin films studied via cross-validation of numerical solutions of the Smit-Beljers equation: Application to (Ga,Mn)As , 2018, Physical Review B.

[39]  Yi-Nan Wang,et al.  Learning non-Higgsable gauge groups in 4D F-theory , 2018, Journal of High Energy Physics.

[40]  Yann LeCun,et al.  Comparing dynamics: deep neural networks versus glassy systems , 2018, ICML.

[41]  Enrique Solano,et al.  Measurement-based adaptation protocol with quantum reinforcement learning , 2018, Quantum Reports.

[42]  Vedran Dunjko,et al.  Neural network operations and Susuki–Trotter evolution of neural network states , 2018, International Journal of Quantum Information.

[43]  Hui Zhai,et al.  Machine learning of frustrated classical spin models (II): Kernel principal component analysis , 2018, Frontiers of Physics.

[44]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[45]  Eric Mjolsness,et al.  Learning dynamic Boltzmann distributions as reduced models of spatial chemical kinetics. , 2018, The Journal of chemical physics.

[46]  Stefan Wessel,et al.  Parameter diagnostics of phases and phase transition learning by neural networks , 2018, Physical Review B.

[47]  Xin Wang,et al.  Automatic spin-chain learning to explore the quantum speed limit , 2018, Physical Review A.

[48]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[49]  Daniel A. Lidar,et al.  Quantum annealing versus classical machine learning applied to a simplified computational biology problem , 2018, npj Quantum Information.

[50]  Pooya Ronagh,et al.  Deep neural decoders for near term fault-tolerant experiments , 2018, Quantum Science and Technology.

[51]  Cédric Bény,et al.  Inferring relevant features: from QFT to PCA , 2018, International Journal of Quantum Information.

[52]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[53]  José Miguel Hernández-Lobato,et al.  Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control , 2018, ISC Workshops.

[54]  Pengfei Zhang,et al.  Visualizing Neural Network Developing Perturbation Theory , 2018, Physical Review A.

[55]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[56]  Lei Wang,et al.  Neural Network Renormalization Group , 2018, Physical review letters.

[57]  Michael C. Abbott,et al.  Maximizing the information learned from finite data selects a simple model , 2017, Proceedings of the National Academy of Sciences.

[58]  Satoshi Iso,et al.  Scale-invariant Feature Extraction of Neural Network and Renormalization Group Flow , 2018, Physical review. E.

[59]  W. Detmold,et al.  Machine learning action parameters in lattice quantum chromodynamics , 2018, 1801.05784.

[60]  Keisuke Fujii,et al.  General framework for constructing fast and near-optimal machine-learning-based decoder of the topological stabilizer codes , 2018, 1801.04377.

[61]  Giancarlo Fissore,et al.  Thermodynamics of Restricted Boltzmann Machines and Related Learning Dynamics , 2018, Journal of Statistical Physics.

[62]  Liang Fu,et al.  Self-learning Monte Carlo with deep neural networks , 2018, Physical Review B.

[63]  E. Miles Stoudenmire,et al.  Learning relevant features of data with multi-scale tensor networks , 2017, ArXiv.

[64]  Jing Chen,et al.  Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines , 2017, Entropy.

[65]  Hythem Sidky,et al.  Learning free energy landscapes using artificial neural networks. , 2017, The Journal of chemical physics.

[66]  Jun Gao,et al.  Experimental Machine Learning of Quantum States. , 2017, Physical review letters.

[67]  Eyal Bairey,et al.  Learning phase transitions from dynamics , 2017, Physical Review B.

[68]  Michael I. Jordan,et al.  Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent , 2017, COLT.

[69]  Vedika Khemani,et al.  Machine Learning Out-of-Equilibrium Phases of Matter. , 2017, Physical review letters.

[70]  Hilbert J. Kappen,et al.  On the role of synaptic stochasticity in training low-precision neural networks , 2017, Physical review letters.

[71]  S. Lloyd,et al.  Quantum Hopfield neural network , 2017, Physical Review A.

[72]  Simone Severini,et al.  Learning hard quantum distributions with variational autoencoders , 2017, npj Quantum Information.

[73]  Samuel S. Schoenholz,et al.  Combining Machine Learning and Physics to Understand Glassy Systems , 2017, Journal of Physics: Conference Series.

[74]  Andrea Grisafi,et al.  Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. , 2017, Physical review letters.

[75]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[76]  Jun Wang,et al.  Unsupervised Generative Modeling Using Matrix Product States , 2017, Physical Review X.

[77]  Nicolai Friis,et al.  Speeding-up the decision making of a learning agent using an ion trap quantum processor , 2017, Quantum Science and Technology.

[78]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.

[79]  Pengfei Zhang,et al.  Machine Learning Topological Invariants with Neural Networks , 2017, Physical review letters.

[80]  David Von Dollen,et al.  Quantum-Enhanced Reinforcement Learning for Finite-Episode Games with Discrete State Spaces , 2017, Front. Phys..

[81]  Kelvin George Chng,et al.  Unsupervised machine learning account of magnetic transitions in the Hubbard model. , 2017, Physical review. E.

[82]  Bo Li,et al.  Exploring the Function Space of Deep-Learning Machines , 2017, Physical review letters.

[83]  M. Yung,et al.  Neural-network-designed pulse sequences for robust control of singlet-Triplet qubits , 2017, 1708.00238.

[84]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[86]  Jun Li,et al.  Separability-entanglement classifier via machine learning , 2017, Physical Review A.

[87]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[88]  Maria Schuld,et al.  Quantum ensembles of quantum classifiers , 2017, Scientific Reports.

[89]  Amnon Shashua,et al.  Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design , 2017, ICLR.

[90]  Adriano Barra,et al.  Phase Diagram of Restricted Boltzmann Machines and Generalised Hopfield Networks with Arbitrary Priors , 2017, Physical review. E.

[91]  Florent Krzakala,et al.  A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines , 2017, Physical Review X.

[92]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[93]  Carlo Baldassi,et al.  From inverse problems to learning: a Statistical Mechanics approach , 2018 .

[94]  Y. Kluger,et al.  Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding , 2017, ArXiv.

[95]  Akinori Tanaka,et al.  Towards reduction of autocorrelation in HMC by machine learning , 2017, 1712.03893.

[96]  Kazuyuki Tanaka,et al.  Deep Neural Network Detects Quantum Phase Transition , 2017, ArXiv.

[97]  Yarden Katz Manufacturing an Artificial Intelligence Revolution , 2017 .

[98]  Lei Wang,et al.  Exploring cluster Monte Carlo updates with Boltzmann machines. , 2017, Physical review. E.

[99]  C. K. Andersen,et al.  Quantum parameter estimation with a neural network , 2017, 1711.05238.

[100]  Yi-Kai Liu,et al.  Super-polynomial and exponential improvements for quantum-enhanced reinforcement learning , 2017 .

[101]  Xiaotong Ni,et al.  Scalable Neural Network Decoders for Higher Dimensional Quantum Codes , 2017, 1710.09489.

[102]  Zhaocheng Liu,et al.  Simulating the Ising Model with a Deep Convolutional Generative Adversarial Network , 2017, 1710.04987.

[103]  S. Foreman,et al.  RG-inspired machine learning for lattice field theory , 2017, 1710.02079.

[104]  Haiping Huang,et al.  Mean-field theory of input dimensionality reduction in unsupervised deep neural networks , 2017, ArXiv.

[105]  Andrew C. E. Reid,et al.  Learning crystal plasticity using digital image correlation: Examples from discrete dislocation dynamics , 2017, ArXiv.

[106]  Enrique Solano,et al.  Generalized Quantum Reinforcement Learning with Quantum Technologies , 2017, ArXiv.

[107]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[108]  Nobuyuki Yoshioka,et al.  Learning disordered topological phases by statistical recovery of symmetry , 2017, 1709.05790.

[109]  Hiroki Saito,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2017, 1709.05468.

[110]  Qiong Zhu,et al.  Identifying Product Order with Restricted Boltzmann Machines , 2017, 1709.02597.

[111]  Zhao Yang,et al.  Machine Learning Spatial Geometry from Entanglement Features , 2017, 1709.01223.

[112]  Alejandro Perdomo-Ortiz,et al.  Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices , 2017, ArXiv.

[113]  Roger G. Melko,et al.  Deep Learning the Ising Model Near Criticality , 2017, J. Mach. Learn. Res..

[114]  Giancarlo Fissore,et al.  Spectral Learning of Restricted Boltzmann Machines , 2017, ArXiv.

[115]  Chao-Hua Yu,et al.  Quantum algorithms for ridge regression , 2017 .

[116]  Steven Weinstein,et al.  Learning the Einstein-Podolsky-Rosen correlations on a Restricted Boltzmann Machine , 2017, 1707.03114.

[117]  Simon Trebst,et al.  Quantum phase recognition via unsupervised machine learning , 2017, 1707.00663.

[118]  U. Seifert,et al.  Thermodynamic efficiency of learning a rule in neural networks , 2017, 1706.09713.

[119]  A. Ramezanpour,et al.  Optimization by a quantum reinforcement algorithm , 2017, ArXiv.

[120]  Michael I. Jordan,et al.  Gradient Descent Can Take Exponential Time to Escape Saddle Points , 2017, NIPS.

[121]  Cesare Furlanello,et al.  Towards meaningful physics from generative models , 2017, ArXiv.

[122]  Liang Jiang,et al.  Deep Neural Network Probabilistic Decoder for Stabilizer Codes , 2017, Scientific Reports.

[123]  Nathan Srebro,et al.  The Marginal Value of Adaptive Gradient Methods in Machine Learning , 2017, NIPS.

[124]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.

[125]  Alireza Alemi,et al.  Exponential Capacity in an Autoencoder Neural Network with a Hidden Layer , 2017, 1705.07441.

[126]  Yang Qi,et al.  Self-learning Monte Carlo method: Continuous-time algorithm , 2017, 1705.06724.

[127]  Manuel Scherzer,et al.  Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice Gauge Theory , 2017, 1705.05582.

[128]  Yi Zhang,et al.  Machine learning Z 2 quantum spin liquids with quasiparticle statistics , 2017, 1705.01947.

[129]  Tanaka Akinori,et al.  Detection of Phase Transition via Convolutional Neural Networks , 2016, 1609.09087.

[130]  Domingos S P Salazar,et al.  Nonequilibrium thermodynamics of restricted Boltzmann machines. , 2017, Physical review. E.

[131]  Z. Ringel,et al.  Mutual information, neural networks and the renormalization group , 2017, Nature Physics.

[132]  Titus Neupert,et al.  Probing many-body localization with neural networks , 2017, 1704.01578.

[133]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[134]  Lyle Noakes,et al.  Generating three-qubit quantum circuits with neural networks , 2017, 1703.10743.

[135]  Chian-De Li,et al.  Applications of neural networks to the studies of phase transitions of two-dimensional Potts models , 2017, 1703.02369.

[136]  Sebastian Johann Wetzel,et al.  Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders , 2017, Physical review. E.

[137]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[138]  Lei Wang,et al.  Can Boltzmann Machines Discover Cluster Updates ? , 2017, Physical review. E.

[139]  R. Zecchina,et al.  Inverse statistical problems: from the inverse Ising problem to data science , 2017, 1702.01522.

[140]  Antonio Celani,et al.  Flow Navigation by Smart Microswimmers via Reinforcement Learning , 2017, Physical review letters.

[141]  Ronald de Wolf,et al.  A Survey of Quantum Learning Theory , 2017, ArXiv.

[142]  Lucas Lamata,et al.  Basic protocols in quantum reinforcement learning with superconducting circuits , 2017, Scientific Reports.

[143]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[144]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[145]  Jeff Z Y Chen,et al.  Identifying polymer states by machine learning. , 2017, Physical review. E.

[146]  Ian J. Goodfellow,et al.  NIPS 2016 Tutorial: Generative Adversarial Networks , 2016, ArXiv.

[147]  Adriano Barra,et al.  Phase transitions in Restricted Boltzmann Machines with generic priors , 2016, Physical review. E.

[148]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[149]  Rémi Monasson,et al.  Emergence of Compositional Representations in Restricted Boltzmann Machines , 2016, Physical review letters.

[150]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[151]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[152]  Serena Bradde,et al.  PCA Meets RG , 2016, Journal of Statistical Physics.

[153]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[154]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[155]  Jon M. Kleinberg,et al.  Inherent Trade-Offs in the Fair Determination of Risk Scores , 2016, ITCS.

[156]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[157]  Barnabás Póczos,et al.  Enabling Dark Energy Science with Deep Generative Models of Galaxy Images , 2016, AAAI.

[158]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[159]  David J. Schwab,et al.  The Deterministic Information Bottleneck , 2015, Neural Computation.

[160]  T. Ohtsuki,et al.  Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions , 2016, 1612.04909.

[161]  Haiping Huang,et al.  Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses , 2016, ArXiv.

[162]  Peter E. Latham,et al.  Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables , 2016, PLoS Comput. Biol..

[163]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[164]  A. Tanaka,et al.  Detection of phase transition via convolutional neural network , 2016, 1609.09087.

[165]  Ammar Daskin,et al.  A Quantum Implementation Model for Artificial Neural Networks , 2016, ArXiv.

[166]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[167]  Tom White,et al.  Sampling Generative Networks: Notes on a Few Effective Techniques , 2016, ArXiv.

[168]  Tom White,et al.  Sampling Generative Networks: Notes on a Few Effective Techniques , 2016, ArXiv.

[169]  M. Benedetti,et al.  Quantum-assisted learning of graphical models with arbitrary pairwise connectivity , 2016, ArXiv.

[170]  Cathy O'Neil,et al.  Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2016, Vikalpa: The Journal for Decision Makers.

[171]  Surya Ganguli,et al.  Statistical Mechanics of Optimal Convex Inference in High Dimensions , 2016 .

[172]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[173]  Gautam Reddy,et al.  Learning to soar in turbulent environments , 2016, Proceedings of the National Academy of Sciences.

[174]  Olivier Marre,et al.  Relevant sparse codes with variational information bottleneck , 2016, NIPS.

[175]  P. Vahle,et al.  A convolutional neural network neutrino event classifier , 2016, ArXiv.

[176]  Joshua B. Tenenbaum,et al.  Building machines that learn and think like people , 2016, Behavioral and Brain Sciences.

[177]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[178]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[179]  Tomaso Poggio,et al.  Learning Functions: When Is Deep Better Than Shallow , 2016, 1603.00988.

[180]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[181]  Gautam Reddy,et al.  Infomax Strategies for an Optimal Balance Between Exploration and Exploitation , 2016, Journal of Statistical Physics.

[182]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[183]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[184]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[185]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[186]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[187]  Florent Krzakala,et al.  Statistical physics of inference: thresholds and algorithms , 2015, ArXiv.

[188]  Nadav Cohen,et al.  On the Expressive Power of Deep Learning: A Tensor Analysis , 2015, COLT 2016.

[189]  Charles K. Fisher,et al.  Bayesian feature selection for high-dimensional linear regression via the Ising approximation with applications to genomics , 2015, Bioinform..

[190]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[191]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[192]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[193]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[194]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[195]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[196]  Charles K. Fisher,et al.  Bayesian Feature Selection with Strongly Regularizing Priors Maps to the Ising Model , 2014, Neural Computation.

[197]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[198]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[199]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[200]  David J. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[201]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[202]  O. A. von Lilienfeld,et al.  Machine learning for many-body physics: The case of the Anderson impurity model , 2014, 1408.1143.

[203]  Gilles Louppe,et al.  Understanding Random Forests: From Theory to Practice , 2014, 1407.7502.

[204]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[205]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[206]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[207]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[208]  Florent Krzakala,et al.  Variational free energies for compressed sensing , 2014, 2014 IEEE International Symposium on Information Theory.

[209]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[210]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[211]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[212]  David J Schwab,et al.  Zipf's law and criticality in multivariate data without fine-tuning. , 2013, Physical review letters.

[213]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[214]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[215]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[216]  S. Ganguli,et al.  Statistical mechanics of complex neural systems and high dimensional data , 2013, 1301.7115.

[217]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[218]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[219]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[220]  A. Pettitt,et al.  Introduction to MCMC , 2012 .

[221]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[222]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[223]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[224]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[225]  Florent Krzakala,et al.  Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.

[226]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.

[227]  Yoav Freund,et al.  Boosting: Foundations and Algorithms , 2012 .

[228]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[229]  Adriano Barra,et al.  On the equivalence of Hopfield networks and Boltzmann Machines , 2011, Neural Networks.

[230]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[231]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[232]  Léon Bottou,et al.  Stochastic Gradient Descent Tricks , 2012, Neural Networks: Tricks of the Trade.

[233]  Hsuan-Tien Lin,et al.  Learning From Data , 2012 .

[234]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[235]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[236]  Daniel Müllner,et al.  Modern hierarchical, agglomerative clustering algorithms , 2011, ArXiv.

[237]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[238]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[239]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[240]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[241]  Anirvan M. Sengupta,et al.  Statistical Mechanics of Transcription-Factor Binding Site Discovery Using Hidden Markov Models , 2010, Journal of statistical physics.

[242]  Nathan Halko,et al.  An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..

[243]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[244]  Geoffrey E. Hinton,et al.  Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine , 2010, NIPS.

[245]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[246]  Massimo Vergassola,et al.  Chasing information to search in random environments , 2009 .

[247]  Geoffrey E. Hinton,et al.  Using fast weights to improve persistent contrastive divergence , 2009, ICML '09.

[248]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[249]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[250]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[251]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[252]  Chuong B Do,et al.  What is the expectation maximization algorithm? , 2008, Nature Biotechnology.

[253]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[254]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[255]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[256]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[257]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[258]  S. Geer,et al.  Regularization in statistics , 2006 .

[259]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[260]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[261]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[262]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[263]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[264]  Michael C. Fu,et al.  Chapter 19 Gradient Estimation , 2006, Simulation.

[265]  L. McMillan,et al.  A Fast Approximation to Multidimensional Scaling , 2006 .

[266]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[267]  William Bialek,et al.  Estimating mutual information and multi-information in large networks , 2005, ArXiv.

[268]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[269]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[270]  Lior Rokach,et al.  Clustering Methods , 2005, The Data Mining and Knowledge Discovery Handbook.

[271]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[272]  B. Turlach DISCUSSION OF "LEAST ANGLE REGRESSION" BY EFRON ET AL. , 2004, math/0406472.

[273]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[274]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[275]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[276]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[277]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[278]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[279]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[280]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[281]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[282]  Gal Chechik,et al.  Information Bottleneck for Gaussian Variables , 2003, J. Mach. Learn. Res..

[283]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[284]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[285]  Bogdan E. Popescu,et al.  Importance Sampled Learning Ensembles , 2003 .

[286]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[287]  J. Friedman Stochastic gradient boosting , 2002 .

[288]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[289]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[290]  M. Opper,et al.  An Idiosyncratic Journey Beyond Mean Field Theory , 2001 .

[291]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[292]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[293]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[294]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[295]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[296]  Chinatsu Aone,et al.  Fast and effective text mining using linear-time document clustering , 1999, KDD '99.

[297]  John P. Sullins Artificial knowing: gender and the thinking machine , 1999, CSOC.

[298]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[299]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[300]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[301]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[302]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[303]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[304]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[305]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[306]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[307]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[308]  Jack P. C. Kleijnen,et al.  Optimization and Sensitivity Analysis of Computer Simulation Models by the Score Function Method , 1996 .

[309]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[310]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[311]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[312]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[313]  Roberto Battiti,et al.  First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method , 1992, Neural Computation.

[314]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[315]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[316]  D. Amit Modelling Brain Function: The World of Attractor Neural Networks , 1989 .

[317]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[318]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[319]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[320]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[321]  Drew McDermott,et al.  The Dark Ages of AI: A Panel Discussion at AAAI-84 , 1985, AI Mag..

[322]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[323]  David Zipser,et al.  Feature Discovery by Competive Learning , 1985, Cogn. Sci..

[324]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[325]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[326]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[327]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[328]  K. Singh,et al.  On the Asymptotic Accuracy of Efron's Bootstrap , 1981 .

[329]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[330]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[331]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[332]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[333]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[334]  Robert S. Bennett,et al.  The intrinsic dimensionality of signal collections , 1969, IEEE Trans. Inf. Theory.

[335]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[336]  V. N. Popov,et al.  Feynman Diagrams for the Yang-Mills Field , 1967 .

[337]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[338]  S. Kullback Information Theory and Statistics , 1959 .

[339]  J. Hubbard Calculation of Partition Functions , 1959 .

[340]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[341]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[342]  R. L. Stratonovich On a Method of Calculating Quantum Distribution Functions , 1957 .

[343]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[344]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[345]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.