On the Probability Distribution of Mooring Line Tensions in a Directional Environment
暂无分享,去创建一个
A joint probabilistic model of the metocean environment is assembled, taking account of wind, wave and current and their respective heading angles. Mooring line tensions are computed in the time domain, for a large set of short-term stationary conditions, intended to span the domain of metocean conditions that contribute significantly to the probabilities of high tensions. Weibull probability distributions are fitted to local tension maxima extracted from each time series. Long time series of 30 hours duration are used to reduce statistical uncertainty. Short-term, Gumbel extreme value distributions of line tension are derived from the maxima distributions. A response surface is fitted to the distribution parameters for line tension, to allow interpolation between the metocean conditions that have been explicitly analysed. A second order reliability method is applied to integrate the short-term tension distributions over the probability of the metocean conditions and obtain the annual extreme value distribution of line tension. Results are given for the most heavily loaded mooring line in two mooring systems: a mobile drilling unit and a production platform. The effects of different assumptions concerning the distribution of wave heading angles in simplified analysis for mooring line design are quantified by comparison with the detailed calculations.Copyright © 2011 by ASME