The next detectors for gravitational wave astronomy

This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

[1]  Jesper Munch,et al.  Ultra-sensitive wavefront measurement using a Hartmann sensor. , 2007, Optics express.

[2]  Lisa Barsotti,et al.  Prospects for doubling the range of Advanced LIGO , 2014, 1410.5882.

[3]  A. Errico,et al.  Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity , 1998 .

[4]  James E. Faller,et al.  Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress , 2014 .

[5]  David Blair,et al.  Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation , 2015, 1501.01542.

[6]  Gabriela Gonz'alez Suspensions thermal noise in the LIGO gravitational wave detector , 2000 .

[7]  Karsten Danzmann,et al.  Double optical spring enhancement for gravitational wave detectors , 2008, 0805.3096.

[8]  Alban Remillieux,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .

[9]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[10]  Lisa Barsotti,et al.  Resonant dampers for parametric instabilities in gravitational wave detectors , 2015 .

[11]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[12]  L. Barsotti,et al.  Realistic filter cavities for advanced gravitational wave detectors , 2013, 1305.1599.

[13]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[14]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[15]  Lisa Barsotti,et al.  Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators , 2011, 1704.03587.

[16]  Tomoki Isogai,et al.  Decoherence and degradation of squeezed states in quantum filter cavities , 2014, 1704.03531.

[17]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[18]  S. Rowan,et al.  Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors. , 2011, The Review of scientific instruments.

[19]  Charlotte Bond,et al.  Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer , 2013 .

[20]  Ettore Majorana,et al.  Low-frequency terrestrial tensor gravitational-wave detector , 2016 .

[21]  Keisuke Goda,et al.  Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers , 2005, gr-qc/0508102.

[22]  David Blair,et al.  Suppression of parametric instabilities in future gravitational wave detectors using damping rings , 2009 .

[23]  Kenneth A. Strain,et al.  Design and development of the advanced LIGO monolithic fused silica suspension , 2012 .

[24]  Yanbei Chen,et al.  Signal recycled laser-interferometer gravitational-wave detectors as optical springs , 2002 .

[25]  Chunnong Zhao,et al.  Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency , 2014, 1402.4901.

[26]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[27]  F. Khalili,et al.  Optimal configurations of filter cavity in future gravitational-wave detectors , 2010, 1003.2859.

[28]  Massachusetts Institute of Technology,et al.  Frequency and surface dependence of the mechanical loss in fused silica , 2006 .

[29]  A. W. Heptonstall,et al.  Investigation of mechanical dissipation in CO2 laser-drawn fused silica fibres and welds , 2010 .

[30]  D. E. Chang,et al.  Ultrahigh-Q mechanical oscillators through optical trapping , 2010, 1101.0146.

[31]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[32]  Kenneth A. Strain,et al.  Enhanced characteristics of fused silica fibers using laser polishing , 2014 .

[33]  Yanbei Chen Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector , 2003 .

[34]  Christian J. Killow,et al.  Hydroxide catalysis bonding for astronomical instruments , 2014 .

[35]  Karsten Danzmann,et al.  White-light cavities, atomic phase coherence, and gravitational wave detectors , 1997 .

[36]  J. Miller,et al.  Effects of mirror aberrations on Laguerre-Gaussian beams in interferometric gravitational-wave detectors , 2011, 1108.3114.

[37]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[38]  R L Byer,et al.  Polarization Sagnac interferometer with postmodulation for gravitational-wave detection. , 1999, Optics letters.

[39]  Chunnong Zhao,et al.  Quantum noise of a white-light cavity using a double-pumped gain medium , 2015 .

[40]  J Degallaix,et al.  Feedback control of thermal lensing in a high optical power cavity. , 2008, The Review of scientific instruments.

[41]  Garrett D. Cole,et al.  Suppression of quantum-radiation-pressure noise in an optical spring , 2012, 1210.0309.

[42]  David Blair,et al.  Numerical calculations of elastic modes frequencies for parametric oscillatory instability in Advanced LIGO interferometer , 2008 .

[43]  Ling Hao,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2014 .

[44]  B C Buchler,et al.  Scattering-free optical levitation of a cavity mirror. , 2013, Physical review letters.

[45]  P. Sarin,et al.  Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance , 2015, 1502.06300.

[46]  A. Heptonstall,et al.  Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions. , 2011, The Review of scientific instruments.

[47]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[48]  Holger Muller,et al.  Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.

[49]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[50]  Haixing Miao,et al.  Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors , 2014, 1409.6458.

[51]  Tomoki Isogai,et al.  Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors. , 2015, Physical review letters.

[52]  Yanbei Chen,et al.  Quantum limits of interferometer topologies for gravitational radiation detection , 2013, 1305.3957.

[53]  M. S. Shahriar,et al.  Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities , 2010 .

[54]  David Blair,et al.  Gingin High Optical Power Test Facility , 2006 .

[55]  Yanbei Chen,et al.  Practical speed meter designs for quantum nondemolition gravitational-wave interferometers , 2002, gr-qc/0208049.

[56]  L. Barsotti,et al.  A general approach to optomechanical parametric instabilities , 2009, 0910.2716.

[57]  J. Marque,et al.  Reduction of higher order mode generation in large scale gravitational wave interferometers by central heating residual aberration correction , 2013 .

[58]  T. Hayler,et al.  Beating the Spin-Down Limit on Gravitational Wave Emission from the Vela Pulsar , 2011 .

[59]  F. Antonucci,et al.  A thermal compensation system for the gravitational wave detector virgo , 2012 .

[60]  André Thüring,et al.  Detuned Twin-Signal-Recycling for ultrahigh-precision interferometers. , 2007, Optics letters.

[61]  R. Kumar,et al.  Reducing the suspension thermal noise of advanced gravitational wave detectors , 2012 .

[62]  J Degallaix,et al.  Parametric instabilities and their control in advanced interferometer gravitational-wave detectors. , 2005, Physical review letters.

[63]  Karsten Danzmann,et al.  Local readout enhancement for detuned signal-recycling interferometers , 2007 .

[64]  M A Barton,et al.  Compensation of strong thermal lensing in high-optical-power cavities. , 2006, Physical review letters.

[65]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[66]  A. Remillieux,et al.  VIRGO: a large interferometer for gravitational wave detection started its first scientific run , 2008 .

[67]  Yanbei Chen,et al.  Scaling law in signal recycled laser-interferometer gravitational-wave detectors , 2003 .

[68]  Benno Willke,et al.  The upgrade of GEO 600 , 2010, 1004.0339.

[69]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[70]  Patrice Hello,et al.  Numerical model of transient thermal effects in high power optical resonators , 1993 .

[71]  H. Kimble,et al.  Enhancement of mechanical Q factors by optical trapping. , 2012, Physical review letters.

[72]  David Blair,et al.  Observation of Parametric Instability in Advanced LIGO. , 2015, Physical review letters.

[73]  David Blair,et al.  Thermal tuning of optical cavities for parametric instability control , 2007 .

[74]  G. D. Hammond,et al.  A study of the fracture mechanisms in pristine silica fibres utilising high speed imaging techniques , 2012 .

[75]  Karsten Danzmann,et al.  Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities. , 2013, Optics express.

[76]  C. Blair,et al.  Three mode interactions as a precision monitoring tool for advanced laser interferometers , 2014, 1402.4899.

[77]  C. Zener Elasticity and anelasticity of metals , 1948 .

[78]  Francesco Marin,et al.  Einstein gravitational wave Telescope conceptual design study , 2011 .

[79]  J. Miller,et al.  Loss in long-storage-time optical cavities. , 2013, Optics express.

[80]  Andreas Freise,et al.  Sensitivity of intracavity filtering schemes for detecting gravitational waves , 2013, 1310.3120.

[81]  E. J. Howell,et al.  Advanced Gravitational Wave Detectors: List of contributors , 2012 .

[82]  Chunnong Zhao,et al.  Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters. , 2015, Physical review letters.

[83]  Kenneth A. Strain,et al.  Finite element modelling of the mechanical loss of silica suspension fibres for advanced gravitational wave detectors , 2009 .

[84]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[85]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[86]  H. Lück,et al.  The Upgrade of GEO 600 , 2012 .

[87]  David Blair,et al.  Thermal tuning the optical cavity for 3 mode interaction studies using a CO 2 laser , 2012 .

[88]  Hartmut Grote,et al.  The GEO 600 status , 2010 .

[89]  A. Rocchi,et al.  Thermal effects and their compensation in the interferometric gravitational wave detector Advanced Virgo , 2011 .

[90]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[91]  Johnson,et al.  Truncated icosahedral gravitational wave antenna. , 1993, Physical review letters.

[92]  Benno Willke,et al.  The third generation of gravitational wave observatories and their science reach , 2010 .

[93]  B. Hauer,et al.  A general procedure for thermomechanical calibration of nano/micro-mechanical resonators , 2013, 1305.0557.

[94]  F. Khalili,et al.  Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.

[95]  T. Hayler,et al.  Update on quadruple suspension design for Advanced LIGO , 2012 .

[96]  Keisuke Goda,et al.  Frequency-resolving spatiotemporal wave-front sensor. , 2004, Optics letters.

[97]  G. W. Cleek,et al.  Temperature Dependence of Young's Modulus of Vitreous Germania and Silica , 1960 .

[98]  David E. McClelland An overview of recycling in laser interferometric gravitational wave detectors , 1995 .

[99]  Eugenio Coccia,et al.  Thermal effects and their compensation in Advanced Virgo , 2012 .

[100]  Chunnong Zhao,et al.  Linear negative dispersion with a gain doublet via optomechanical interactions. , 2015, Optics letters.

[101]  Karsten Danzmann,et al.  Thermal correction of the radii of curvature of mirrors for GEO 600 , 2004 .

[102]  P. Hello Compensation for thermal effects in mirrors of gravitational wave interferometers , 2001 .

[103]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[104]  R. Schnabel,et al.  Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors , 2003, gr-qc/0303066.

[105]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[106]  Jose M. Martin-Garcia,et al.  The light-cone theorem , 2009, 0905.2133.

[107]  Yanbei Chen,et al.  Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme , 2003 .

[108]  David E. McClelland,et al.  Polarization speed meter for gravitational-wave detection , 2012 .

[109]  S. L. Danilishin Sensitivity limitations in optical speed meter topology of gravitational-wave antennas , 2004 .

[110]  M. G. Beker,et al.  Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise , 2011 .

[111]  P. H. Kim,et al.  Multidimensional optomechanical cantilevers for high-frequency force sensing , 2013, 1308.3708.

[112]  Ho Jung Paik,et al.  Newtonian-noise cancellation in full-tensor gravitational-wave detectors , 2015, 1504.04724.

[113]  David Blair,et al.  Parametric instabilities in advanced gravitational wave detectors , 2010 .

[114]  Chunnong Zhao,et al.  Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. , 2014, Physical review letters.

[115]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[116]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[117]  G. Cagnoli,et al.  Effects of nonlinear thermoelastic damping in highly stressed fibers , 2002 .

[118]  R. Adhikari,et al.  Active noise cancellation in a suspended interferometer. , 2011, The Review of scientific instruments.

[119]  Karsten Danzmann,et al.  Experimental characterization of frequency-dependent squeezed light , 2005, 0706.4479.

[120]  G S Pati,et al.  Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor. , 2007, Physical review letters.

[121]  G. M. Harry,et al.  Optical coatings and thermal noise in precision measurement , 2011 .

[122]  David Blair,et al.  Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry-Perot cavity , 2013 .

[123]  M. S. Shahriar,et al.  Enhancement of Sensitivity-Bandwidth Product of Interferometric GW Detectors using White Light Cavities , 2008 .

[124]  Charlotte Bond,et al.  Higher order Laguerre-Gauss mode degeneracy in realistic, high finesse cavities , 2011, 1107.3812.

[125]  Daniel Sigg,et al.  Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. , 2007, Physical review letters.

[126]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[127]  David Blair,et al.  Testing the suppression of opto-acoustic parametric interactions using optical feedback control , 2010 .