Non-linear noise adaptive Kalman filtering via variational Bayes

We consider joint estimation of state and time-varying noise covariance matrices in non-linear stochastic state space models. We propose a variational Bayes and Gaussian non-linear filtering based algorithm for efficient computation of the approximate filtering posterior distributions. The formulation allows the use of efficient Gaussian integration methods such as unscented transform, cubature integration and Gauss-Hermite integration along with the classical Taylor series approximations. The performance of the algorithm is illustrated in a simulated application.

[1]  Y. Bar-Shalom,et al.  A recursive multiple model approach to noise identification , 1994 .

[2]  Zoubin Ghahramani,et al.  The variational Kalman smoother , 2001 .

[3]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[4]  Tommi S. Jaakkola,et al.  Tutorial on variational approximation methods , 2000 .

[5]  Petar M. Djuric,et al.  Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Simo Sarkka On Sequential Monte Carlo Sampling of Discretely Observed Stochastic Differential Equations , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[7]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[8]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[9]  Simo Särkkä,et al.  Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[10]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[11]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[12]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[13]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[14]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[15]  V. Šmídl,et al.  The Variational Bayes Method in Signal Processing , 2005 .

[16]  Uwe D. Hanebeck,et al.  Analytic moment-based Gaussian process filtering , 2009, ICML '09.

[17]  Juha Karhunen,et al.  Hierarchical models of variance sources , 2004, Signal Process..

[18]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[19]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[20]  Eduardo Mario Nebot,et al.  An outlier-robust Kalman filter , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[22]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[23]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[24]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[25]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..