Reduced Words and Plane Partitions
暂无分享,去创建一个
[1] Robert A. Proctor. New Symmetric Plane Partition Identities from Invariant Theory Work of De Concini and Procesi , 1990, Eur. J. Comb..
[2] Itaru Terada,et al. Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn , 1987 .
[3] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[4] R. King. Weight multiplicities for the classical groups , 1976 .
[5] P. M. Cohn. ALGEBRES DE LIE SEMI‐SIMPLES COMPLEXES , 1968 .
[6] I. G. MacDonald,et al. Notes on Schubert polynomials , 1991 .
[7] J. Shaw. Combinatory Analysis , 1917, Nature.
[8] Ira M. Gessel,et al. Determinants, Paths, and Plane Partitions , 1989 .
[9] Sergey Fomin,et al. Schubert Polynomials and the Nilcoxeter Algebra , 1994 .
[10] THE CLASSICAL GROUPS. SPECTRAL ANALYSIS OF THEIR FINITE-DIMENSIONAL REPRESENTATIONS , 1962 .
[11] Sergey Fomin,et al. Balanced Labellings and Schubert Polynomials , 1997, Eur. J. Comb..
[12] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[13] Richard P. Stanley,et al. Some Combinatorial Properties of Schubert Polynomials , 1993 .
[14] Robert A. Proctor. Odd symplectic groups , 1988 .
[15] Victor Reiner,et al. Key Polynomials and a Flagged Littlewood-Richardson Rule , 1995, J. Comb. Theory A.
[16] RICHARD P. STANLEY,et al. On the Number of Reduced Decompositions of Elements of Coxeter Groups , 1984, Eur. J. Comb..
[17] G. B. Mathews,et al. Combinatory Analysis. Vol. II , 1915, The Mathematical Gazette.
[18] Sergey Fomin,et al. The Yang-Baxter equation, symmetric functions, and Schubert polynomials , 1996, Discret. Math..
[19] Alain Lascoux,et al. Polynômes de Schubert Une approche historique , 1995, Discret. Math..