Model Selection for Support Vector Machines
暂无分享,去创建一个
[1] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[2] L. A. G. Dresel,et al. Elementary Numerical Analysis , 1966 .
[3] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[4] Samuel D. Conte,et al. Elementary Numerical Analysis: An Algorithmic Approach , 1975 .
[5] Martin Fodslette Møller,et al. A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.
[6] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[7] U. M. Feyyad. Data mining and knowledge discovery: making sense out of data , 1996 .
[8] Michael Kearns,et al. A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split , 1995, Neural Computation.
[9] Bernhard Schölkopf,et al. Kernel Principal Component Analysis , 1997, ICANN.
[10] Bernhard Schölkopf,et al. Support vector learning , 1997 .
[11] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[12] J. Platt. Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .
[13] J. C. BurgesChristopher. A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .
[14] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[15] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[16] David Haussler,et al. Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.
[17] Eric Miller,et al. Testing and evaluating computer intrusion detection systems , 1999, CACM.
[18] Katharina Morik,et al. Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring , 1999, ICML.
[19] Tommi S. Jaakkola,et al. Maximum Entropy Discrimination , 1999, NIPS.
[20] R. C. Williamson,et al. Kernel-dependent support vector error bounds , 1999 .
[21] R. C. Williamson,et al. Generalization Bounds via Eigenvalues of the Gram matrix , 1999 .
[22] David Haussler,et al. Probabilistic kernel regression models , 1999, AISTATS.
[23] Bernhard Schölkopf,et al. GACV for Support Vector Machines , 2000 .
[24] Julian Ashbourn,et al. Biometrics: Advanced Identity Verification , 2000, Springer London.
[25] Sayan Mukherjee,et al. Feature Selection for SVMs , 2000, NIPS.
[26] Bernhard Schölkopf,et al. Bounds on Error Expectation for SVM , 2000 .
[27] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[28] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[29] Thorsten Joachims,et al. Estimating the Generalization Performance of an SVM Efficiently , 2000, ICML.
[30] Richard Lippmann,et al. The 1999 DARPA off-line intrusion detection evaluation , 2000, Comput. Networks.
[31] O. Chapelle,et al. Bounds on error expectation for SVM , 2000 .
[32] Hansong Zhang,et al. Gacv for support vector machines , 2000 .
[33] Tommi S. Jaakkola,et al. Feature Selection and Dualities in Maximum Entropy Discrimination , 2000, UAI.
[34] Peter L. Bartlett,et al. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..
[35] N. Cristianini,et al. On Kernel-Target Alignment , 2001, NIPS.
[36] G. Cawley. Model Selection for Support Vector Machines via Adaptive Step-Size Tabu Search , 2001 .
[37] K. Johana,et al. Benchmarking Least Squares Support Vector Machine Classifiers , 2022 .