iHDG: An Iterative HDG Framework for Partial Differential Equations

We present a scalable iterative solver for high-order hybridized discontinuous Galerkin (HDG) discretizations of linear partial differential equations. It is an interplay between domain decomposition methods and HDG discretizations, and hence inheriting advances from both sides. In particular, the method can be viewed as a Gauss-Seidel approach that requires only independent element-by-element and face-by-face local solves in each iteration. As such, it is well-suited for current and future computing systems with massive concurrencies. Unlike conventional Gauss-Seidel schemes which are purely algebraic, the convergence of iHDG, thanks to the built-in HDG numerical flux, does not depend on the ordering of unknowns. We rigorously show the convergence of the proposed method for the transport equation, the linearized shallow water equation and the convection-diffusion equation. For the transport equation, the method is convergent regardless of mesh size $h$ and solution order $p$, and furthermore the convergence rate is independent of the solution order. For the linearized shallow water and the convection-diffusion equations we show that the convergence is conditional on both $h$ and $p$. Extensive steady and time-dependent numerical results for the 2D and 3D transport equations, the linearized shallow water equation, and the convection-diffusion equation are presented to verify the theoretical findings.

[1]  Francis X. Giraldo,et al.  A high‐order triangular discontinuous Galerkin oceanic shallow water model , 2008 .

[2]  Martin J. Gander,et al.  A homographic best approximation problem with application to optimized Schwarz waveform relaxation , 2009, Math. Comput..

[3]  Jintao Cui,et al.  An analysis of HDG methods for the Helmholtz equation , 2014 .

[4]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[5]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[6]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[7]  Bernardo Cockburn,et al.  Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations , 2011, J. Comput. Phys..

[8]  Jérémie Szeftel,et al.  Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation , 2007, Math. Comput..

[9]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[10]  Jaime Peraire,et al.  Navier-Stokes Solution Using Hybridizable Discontinuous Galerkin methods , 2011 .

[11]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[12]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[13]  H. Atkins,et al.  Numerical Evaluation of P-multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations , 2005 .

[14]  Martin J. Gander,et al.  Analysis of Schwarz Methods for a Hybridizable Discontinuous Galerkin Discretization , 2014, SIAM J. Numer. Anal..

[15]  Guido Kanschat,et al.  Robust smoothers for high-order discontinuous Galerkin discretizations of advection-diffusion problems , 2008 .

[16]  Karen Willcox,et al.  Hessian‐based model reduction for large‐scale systems with initial‐condition inputs , 2008 .

[17]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[18]  Ludmil T. Zikatanov,et al.  Uniformly Convergent Multigrid Methods for Convection–Diffusion Problems without Any Constraint on Coarse Grids , 2004, Adv. Comput. Math..

[19]  Stéphane Lanteri,et al.  A Hybridizable Discontinuous Galerkin Method for Solving 3D Time-Harmonic Maxwell’s Equations , 2013 .

[20]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[21]  Axel Modave,et al.  GPU-accelerated discontinuous Galerkin methods on hybrid meshes , 2015, J. Comput. Phys..

[22]  Minh-Binh Tran Parallel Schwarz waveform relaxation method for a semilinear heat equation in a cylindrical domain , 2010 .

[23]  Tan Bui-Thanh,et al.  From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations , 2015, J. Comput. Phys..

[24]  Martin J. Gander,et al.  Optimized Schwarz Waveform Relaxation Methods: A Large Scale Numerical Study , 2011 .

[25]  K. Fidkowski Algebraic tailoring of discontinuous Galerkin p-multigrid for convection , 2014 .

[26]  Paul Houston,et al.  A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics , 2009, J. Sci. Comput..

[27]  Tan Bui-Thanh,et al.  Construction and Analysis of HDG Methods for Linearized Shallow Water Equations , 2016, SIAM J. Sci. Comput..

[28]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[29]  A. Hadjidimos Iterative methods for the solution of linear systems , 1989 .

[30]  Martin J. Gander On the influence of geometry on optimized Schwarz methods , 2011 .

[31]  Bo Dong,et al.  A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..

[32]  Herbert Egger,et al.  A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems , 2010 .

[33]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[34]  Martin J. Gander,et al.  Best Robin Parameters for Optimized Schwarz Methods at Cross Points , 2012, SIAM J. Sci. Comput..

[35]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[36]  Tan Bui-Thanh,et al.  From Rankine-Hugoniot Condition to a Constructive Derivation of HDG Methods , 2015 .

[37]  Stéphane Lanteri,et al.  A hybridizable discontinuous Galerkin method for time-harmonic Maxwell's equations , 2011 .

[38]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[39]  Wolfgang Hackbusch,et al.  Downwind Gauß‐Seidel Smoothing for Convection Dominated Problems , 1997 .

[40]  Minh-Binh Tran,et al.  Parallel Schwarz Waveform Relaxation Algorithm for an N-Dimensional Semilinear Heat Equation , 2010, 1006.1323.

[41]  Martin J. Gander,et al.  Non Shape Regular Domain Decompositions: An Analysis Using a Stable Decomposition in , 2013, Domain Decomposition Methods in Science and Engineering XX.

[42]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[43]  Jinchao Xu,et al.  A Crosswind Block Iterative Method for Convection-Dominated Problems , 1999, SIAM J. Sci. Comput..

[44]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[45]  Randolph E. Bank,et al.  A Comparison of Two Multilevel Iterative Methods for Nonsymmetric and Indefinite Elliptic Finite Element Equations , 1981 .

[46]  Peter Monk,et al.  Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation , 2011, J. Sci. Comput..

[47]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[48]  Bernardo Cockburn,et al.  High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..

[49]  Laurence Halpern,et al.  Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits , 2009 .