Plethysms of Chromatic and Tutte Symmetric Functions
暂无分享,去创建一个
[1] Sophie Spirkl,et al. A deletion-contraction relation for the chromatic symmetric function , 2020, Eur. J. Comb..
[2] A. Garsia,et al. the Theory of Parking Functions and Diagonal Harmonics , 2011 .
[3] Gian-Carlo Rota,et al. Plethysm, categories, and combinatorics , 1985 .
[4] Jeffrey B. Remmel,et al. A computational and combinatorial exposé of plethystic calculus , 2011 .
[5] Sylvie Corteel,et al. Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials , 2019, Selecta Mathematica.
[6] Sergei K. Lando,et al. Vassiliev knot invariants. III: Forest algebra and weighted graphs , 1994 .
[7] Bernard Leclerc,et al. Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .
[8] Sophie Spirkl,et al. A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function , 2021, Electron. J. Comb..
[10] I. Pak,et al. Breaking down the reduced Kronecker coefficients , 2020, 2003.11398.
[11] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[12] Richard P. Stanley,et al. A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .
[13] J. Haglund,et al. Hall-Littlewood expansions of Schur delta operators at $t = 0$ , 2018, 1801.08017.
[14] P. Alexandersson. LLT polynomials, elementary symmetric functions and melting lollipops , 2019, Journal of Algebraic Combinatorics.
[15] Soojin Cho,et al. Chromatic Bases for Symmetric Functions , 2015, Electron. J. Comb..
[16] Richard P. Stanley,et al. Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..
[17] Sophie Spirkl,et al. Modular relations of the Tutte symmetric function , 2022, J. Comb. Theory, Ser. A.
[18] J. Remmel,et al. A Proof of the Delta Conjecture When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q=0}$$\end{document} , 2019, Annals of Combinatorics.
[19] Richard P. Stanley. Acyclic orientations of graphs , 1973, Discret. Math..
[20] Steven D. Noble,et al. A weighted graph polynomial from chromatic invariants of knots , 1999 .
[21] Philippe Nadeau,et al. Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function , 2019, Discret. Math..