Plethysms of Chromatic and Tutte Symmetric Functions

Plethysm is a fundamental operation in symmetric function theory, derived directly from its connection with representation theory. However, it does not admit a simple combinatorial interpretation, and finding coefficients of Schur function plethysms is a major open question. In this paper, we introduce a graph-theoretic interpretation for any plethysm based on the chromatic symmetric function. We use this interpretation to give simple proofs of new and previously known plethystic identities, as well as chromatic symmetric function identities.

[1]  Sophie Spirkl,et al.  A deletion-contraction relation for the chromatic symmetric function , 2020, Eur. J. Comb..

[2]  A. Garsia,et al.  the Theory of Parking Functions and Diagonal Harmonics , 2011 .

[3]  Gian-Carlo Rota,et al.  Plethysm, categories, and combinatorics , 1985 .

[4]  Jeffrey B. Remmel,et al.  A computational and combinatorial exposé of plethystic calculus , 2011 .

[5]  Sylvie Corteel,et al.  Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials , 2019, Selecta Mathematica.

[6]  Sergei K. Lando,et al.  Vassiliev knot invariants. III: Forest algebra and weighted graphs , 1994 .

[7]  Bernard Leclerc,et al.  Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .

[8]  Sophie Spirkl,et al.  A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function , 2021, Electron. J. Comb..

[10]  I. Pak,et al.  Breaking down the reduced Kronecker coefficients , 2020, 2003.11398.

[11]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[12]  Richard P. Stanley,et al.  A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .

[13]  J. Haglund,et al.  Hall-Littlewood expansions of Schur delta operators at $t = 0$ , 2018, 1801.08017.

[14]  P. Alexandersson LLT polynomials, elementary symmetric functions and melting lollipops , 2019, Journal of Algebraic Combinatorics.

[15]  Soojin Cho,et al.  Chromatic Bases for Symmetric Functions , 2015, Electron. J. Comb..

[16]  Richard P. Stanley,et al.  Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..

[17]  Sophie Spirkl,et al.  Modular relations of the Tutte symmetric function , 2022, J. Comb. Theory, Ser. A.

[18]  J. Remmel,et al.  A Proof of the Delta Conjecture When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q=0}$$\end{document} , 2019, Annals of Combinatorics.

[19]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[20]  Steven D. Noble,et al.  A weighted graph polynomial from chromatic invariants of knots , 1999 .

[21]  Philippe Nadeau,et al.  Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function , 2019, Discret. Math..