Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing☆

Highlights • Co-variation in lateralization during word reading dissociated three subsystems.• Posterior ventral occipito-temporal cortex (vOT) with precentral gyrus.• Middle vOT with pars opercularis, pars triangularis and supramarginal gyrus.• Anterior vOT with pars orbitalis, middle frontal gyrus and thalamus.

[1]  Russell A. Poldrack,et al.  The Neural Substrates of Visual Perceptual Learning of Words: Implications for the Visual Word Form Area Hypothesis , 2007, Journal of Cognitive Neuroscience.

[2]  M. Sereno,et al.  Dissociation of Sensitivity to Spatial Frequency in Word and Face Preferential Areas of the Fusiform Gyrus , 2011, Cerebral cortex.

[3]  Cathy J. Price,et al.  Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words , 2008, NeuroImage.

[4]  John S. Duncan,et al.  Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study , 2006, NeuroImage.

[5]  François Lazeyras,et al.  Anatomical variability of the lateral frontal lobe surface: implication for intersubject variability in language neuroimaging , 2005, NeuroImage.

[6]  Richard S. J. Frackowiak,et al.  Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia , 2008, The Journal of Neuroscience.

[7]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[8]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[9]  S. Dehaene,et al.  Cultural Recycling of Cortical Maps , 2007, Neuron.

[10]  J. A. Frost,et al.  Language dominance in neurologically normal and epilepsy subjects , 1999 .

[11]  M. Seghier,et al.  Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network , 2010, The Journal of Neuroscience.

[12]  E. D. Burgund,et al.  Task effects in the mid-fusiform gyrus: A comparison of orthographic, phonological, and semantic processing of Chinese characters , 2010, Brain and Language.

[13]  Cathy J. Price,et al.  A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading , 2012, NeuroImage.

[14]  G. Flandin,et al.  Predicting Language Lateralization from Gray Matter , 2009, The Journal of Neuroscience.

[15]  James A. Reggia,et al.  Cost minimization during simulated evolution of paired neural networks leads to asymmetries and specialization , 2003, Cognitive Systems Research.

[16]  Karl J. Friston,et al.  Functional ontologies for cognition: The systematic definition of structure and function , 2005, Cognitive neuropsychology.

[17]  Alan Connelly,et al.  A Direct Test for Lateralization of Language Activation using fMRI: Comparison with Invasive Assessments in Children with Epilepsy , 2002, NeuroImage.

[18]  Hidenao Fukuyama,et al.  Hemispheric asymmetry emerges at distinct parts of the occipitotemporal cortex for objects, logograms and phonograms: A functional MRI study , 2005, NeuroImage.

[19]  C. Price,et al.  The Interactive Account of ventral occipitotemporal contributions to reading , 2011, Trends in Cognitive Sciences.

[20]  T. Shallice,et al.  Dual-Process Model in Semantic Priming: A Functional Imaging Perspective , 1999, NeuroImage.

[21]  Cathy J. Price,et al.  Dissociating functional brain networks by decoding the between-subject variability , 2009, NeuroImage.

[22]  Tutis Vilis,et al.  Task-related laterality effects in the lateral occipital complex , 2007, Brain Research.

[23]  Andreas Kleinschmidt,et al.  Specialization for written words over objects in the visual cortex , 2011, NeuroImage.

[24]  Li Yao,et al.  Multiple neural networks supporting a semantic task: An fMRI study using independent component analysis , 2009, NeuroImage.

[25]  T Landis,et al.  Spatio-temporal analysis of electric brain activity during semantic and phonological word processing. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[26]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[27]  C. Price,et al.  Three Distinct Ventral Occipitotemporal Regions for Reading and Object Naming , 1999, NeuroImage.

[28]  Katherine L. Wheat,et al.  During Visual Word Recognition, Phonology Is Accessed within 100 ms and May Be Mediated by a Speech Production Code: Evidence from Magnetoencephalography , 2010, The Journal of Neuroscience.

[29]  Joseph T. Devlin,et al.  Supramarginal gyrus involvement in visual word recognition , 2009, Cortex.

[30]  Mert R. Sabuncu,et al.  A Surface-based Analysis of Language Lateralization and Cortical Asymmetry , 2013, Journal of Cognitive Neuroscience.

[31]  Mariano Sigman,et al.  Hierarchical Coding of Letter Strings in the Ventral Stream: Dissecting the Inner Organization of the Visual Word-Form System , 2007, Neuron.

[32]  Asaid Khateb,et al.  Variability of fMRI activation during a phonological and semantic language task in healthy subjects , 2004, Human brain mapping.

[33]  J. Dien A tale of two recognition systems: Implications of the fusiform face area and the visual word form area for lateralized object recognition models , 2009, Neuropsychologia.

[34]  Marcela Perrone-Bertolotti,et al.  Dynamic Causal Modeling of Spatiotemporal Integration of Phonological and Semantic Processes: An Electroencephalographic Study , 2012, The Journal of Neuroscience.

[35]  S. Petersen,et al.  The putative visual word form area is functionally connected to the dorsal attention network. , 2012, Cerebral cortex.

[36]  P. Matthews,et al.  Semantic Processing in the Left Inferior Prefrontal Cortex: A Combined Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation Study , 2003, Journal of Cognitive Neuroscience.

[37]  Timothy Edward John Behrens,et al.  Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography , 2010, NeuroImage.

[38]  Rutvik H. Desai,et al.  The neurobiology of semantic memory , 2011, Trends in Cognitive Sciences.

[39]  Silvia Brem,et al.  The left occipitotemporal system in reading: Disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia , 2011, NeuroImage.

[40]  Michael Schwarz,et al.  The Involvement of the Thalamus in Semantic Retrieval: A Clinical Group Study , 2013, Journal of Cognitive Neuroscience.

[41]  Marc Brysbaert,et al.  The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. , 2010, Cerebral cortex.

[42]  Brian A Wandell,et al.  White matter pathways in reading , 2007, Current Opinion in Neurobiology.

[43]  Jimin Liang,et al.  Intrinsically organized network for word processing during the resting state , 2011, Neuroscience Letters.

[44]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[45]  Bernard Mazoyer,et al.  Word and non-word reading: What role for the Visual Word Form Area? , 2005, NeuroImage.

[46]  M. Kringelbach,et al.  Activation of the Left Inferior Frontal Gyrus in the First 200 ms of Reading: Evidence from Magnetoencephalography (MEG) , 2009, PloS one.

[47]  J. Hellige,et al.  Laterality across the world's languages , 2006 .

[48]  Steven E. Petersen,et al.  Manipulation of Length and Lexicality Localizes the Functional Neuroanatomy of Phonological Processing in Adult Readers , 2011, Journal of Cognitive Neuroscience.

[49]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[50]  R. Poldrack Can cognitive processes be inferred from neuroimaging data? , 2006, Trends in Cognitive Sciences.

[51]  Philippe Kahane,et al.  Cortical dynamics of word recognition , 2008, Human brain mapping.

[52]  J. Wouters,et al.  Neuroscience and Biobehavioral Reviews a Qualitative and Quantitative Review of Diffusion Tensor Imaging Studies in Reading and Dyslexia , 2022 .

[53]  Marc Brysbaert,et al.  Colateralization of Broca’s area and the visual word form area in left-handers: fMRI evidence , 2012, Brain and Language.

[54]  D Y von Cramon,et al.  Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. , 2000, Cerebral cortex.

[55]  Michael S C Thomas,et al.  Multiple Routes from Occipital to Temporal Cortices during Reading , 2011, The Journal of Neuroscience.

[56]  A. Mechelli,et al.  Reading and reading disturbance , 2005, Current Opinion in Neurobiology.

[57]  Cathy J. Price,et al.  Explaining Left Lateralization for Words in the Ventral Occipitotemporal Cortex , 2011, The Journal of Neuroscience.

[58]  Ferath Kherif,et al.  r Human Brain Mapping 32:1602–1614 (2011) r Regional and Hemispheric Determinants of Language Laterality: Implications for Preoperative fMRI , 2022 .

[59]  Kewei Chen,et al.  Cerebral asymmetry in children when reading Chinese characters. , 2005, Brain research. Cognitive brain research.

[60]  Patrick Dupont,et al.  The associative-semantic network for words and pictures: Effective connectivity and graph analysis , 2013, Brain and Language.

[61]  Joseph T. Devlin,et al.  Early and Sustained Supramarginal Gyrus Contributions to Phonological Processing , 2012, Front. Psychology.

[62]  K. Hugdahl,et al.  Lateralization of cognitive processes in the brain. , 2000, Acta psychologica.

[63]  R. Buckner,et al.  Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. , 1995, Journal of neurophysiology.

[64]  Karl J. Friston,et al.  Dissociating Reading Processes on the Basis of Neuronal Interactions , 2005, Journal of Cognitive Neuroscience.

[65]  Jerzy P. Szaflarski,et al.  Semantic association investigated with functional MRI and independent component analysis , 2011, Epilepsy & Behavior.

[66]  Ferath Kherif,et al.  Explaining Function with Anatomy: Language Lateralization and Corpus Callosum Size , 2008, The Journal of Neuroscience.

[67]  C. Price,et al.  Phonological decisions require both the left and right supramarginal gyri , 2010, Proceedings of the National Academy of Sciences.

[68]  T Landis,et al.  Time-resolved sex differences in language lateralization. , 2005, Brain : a journal of neurology.

[69]  Mohamed L. Seghier,et al.  Laterality index in functional MRI: methodological issues☆ , 2008, Magnetic resonance imaging.

[70]  Brian A. Wandell,et al.  Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections , 2013, Brain and Language.

[71]  Morten L. Kringelbach,et al.  Visual word recognition: the first half second , 2004, NeuroImage.

[72]  Florent Aubry,et al.  Testing for the Dual-Route Cascade Reading Model in the Brain: An fMRI Effective Connectivity Account of an Efficient Reading Style , 2009, PloS one.

[73]  S. Dehaene,et al.  Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere , 2010, Journal of Cognitive Neuroscience.

[74]  M. Baciu,et al.  Evaluating fMRI methods for assessing hemispheric language dominance in healthy subjects. , 2005, European journal of radiology.

[75]  Bruce Crosson,et al.  Subcortical Mechanisms in Language: Lexical–Semantic Mechanisms and the Thalamus , 1999, Brain and Cognition.

[76]  Peter Mariën,et al.  Impairment of syntax and lexical semantics in a patient with bilateral paramedian thalamic infarction , 2006, Brain and Language.

[77]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[78]  David E. Cox,et al.  Dynamic-intentional thalamic aphasia: a failure of lexical-semantic self-activation , 2011, Neurocase.

[79]  Katsuya Ogata,et al.  Distinct role of spatial frequency in dissociative reading of ideograms and phonograms: An fMRI study , 2012, NeuroImage.

[80]  D Le Bihan,et al.  Functional MR evaluation of temporal and frontal language dominance compared with the Wada test , 2000, Neurology.

[81]  Marc Brysbaert,et al.  Cerebral Lateralization of Frontal Lobe Language Processes and Lateralization of the Posterior Visual Word Processing System , 2008, Journal of Cognitive Neuroscience.