The prize collecting Steiner tree problem: models and Lagrangian dual optimization approaches

Abstract We propose a generalized version of the Prize Collecting Steiner Tree Problem (PCSTP), which offers a fundamental unifying model for several well-known $\mathcal{NP}$ -hard tree optimization problems. The PCSTP also arises naturally in a variety of network design applications including cable television and local access networks. We reformulate the PCSTP as a minimum spanning tree problem with additional packing and knapsack constraints and we explore various nondifferentiable optimization algorithms for solving its Lagrangian dual. We report computational results for nine variants of deflected subgradient strategies, the volume algorithm (VA), and the variable target value method used in conjunction with the VA and with a generalized Polyak–Kelley cutting plane technique. The performance of these approaches is also compared with an exact stabilized constraint generation procedure.

[1]  Jean-Louis Goffin,et al.  On convergence rates of subgradient optimization methods , 1977, Math. Program..

[2]  Matthias Ehrgott,et al.  OR software - ORSEP operations research software exchange program Edited by Professor H.W. Hamacher K_TREE/K_SUBGRAPH: A program package for minimal weighted K-cardinality trees and subgraphs , 1996 .

[3]  G. Nemhauser,et al.  An Efficient Primal Simplex Algorithm for Maximum Weighted Vertex Packing on Bipartite Graphs , 1982 .

[4]  Christian Blum,et al.  Local Search Algorithms for the k-cardinality Tree Problem , 2003, Discret. Appl. Math..

[5]  Edmund Ihler,et al.  Class Steiner Trees and VLSI-design , 1999, Discret. Appl. Math..

[6]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[7]  David S. Johnson,et al.  The prize collecting Steiner tree problem: theory and practice , 2000, SODA '00.

[8]  Robert Mifflin,et al.  An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..

[9]  Brian Kallehauge,et al.  Lagrangian duality applied to the vehicle routing problem with time windows , 2006, Comput. Oper. Res..

[10]  H. T. Lau Steiner Tree Problem , 1986 .

[11]  A. Zelikovsky,et al.  An improved approximation scheme for the Group Steiner Problem , 2001 .

[12]  Mohamed Haouari,et al.  A hybrid Lagrangian genetic algorithm for the prize collecting Steiner tree problem , 2006, Comput. Oper. Res..

[13]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[14]  Takeo Yamada,et al.  Upper and lower bounding procedures for minimum rooted k-subtree problem , 2000, Eur. J. Oper. Res..

[15]  Gilbert Laporte,et al.  A comparative analysis of several formulations for the generalized minimum spanning tree problem , 2002, Networks.

[16]  Hanif D. Sherali,et al.  A variable target value method for nondifferentiable optimization , 2000, Oper. Res. Lett..

[17]  Nelson Maculan,et al.  The volume algorithm revisited: relation with bundle methods , 2002, Math. Program..

[18]  N. Z. Shor,et al.  Solution of minimax problems by the method of generalized gradient descent with dilatation of the space , 1972 .

[19]  Matteo Fischetti,et al.  Weighted k-cardinality trees: Complexity and polyhedral structure , 1994, Networks.

[20]  David P. Williamson,et al.  A note on the prize collecting traveling salesman problem , 1993, Math. Program..

[21]  Dorit S. Hochbaum,et al.  AnO(logk)-approximation algorithm for thek minimum spanning tree problem in the plane , 2006, Algorithmica.

[22]  Matteo Fischetti,et al.  An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem , 2006, Math. Program..

[23]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[24]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[25]  Mauricio G. C. Resende,et al.  Strong lower bounds for the prize collecting Steiner problem in graphs , 2004, Discret. Appl. Math..

[26]  J. Salazar,et al.  A note on the generalized Steiner tree polytope , 2000 .

[27]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[28]  Christian Blum,et al.  New metaheuristic approaches for the edge-weighted k-cardinality tree problem , 2005, Comput. Oper. Res..

[29]  Dana S. Richards,et al.  Steiner tree problems , 1992, Networks.

[30]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[31]  Boting Yang,et al.  The class Steiner minimal tree problem: a lower bound and test problem generation , 2000, Acta Informatica.

[32]  Franz Kappel,et al.  An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..

[33]  Stefan Voß,et al.  Solving group Steiner problems as Steiner problems , 2004, Eur. J. Oper. Res..

[34]  H. Sherali,et al.  A primal-dual conjugate subgradient algorithm for specially structured linear and convex programming problems , 1989 .

[35]  Horst W. Hamacher,et al.  Integer programming approaches tofacilities layout models with forbidden areas , 1998 .

[36]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[37]  C. Lemaréchal,et al.  Nonsmooth optimization : proceedings of a IIASA workshop, March 28-April 8, 1977 , 1978 .

[38]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[39]  N. Z. Shor Utilization of the operation of space dilatation in the minimization of convex functions , 1972 .

[40]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[41]  Gabriele Reich,et al.  Beyond Steiner's Problem: A VLSI Oriented Generalization , 1989, WG.

[42]  Hanif D. Sherali,et al.  Limited Memory Space Dilation and Reduction Algorithms , 2001, Comput. Optim. Appl..

[43]  H. Sherali,et al.  Conjugate gradient methods using quasi-Newton updates with inexact line searches , 1990 .

[44]  Celso C. Ribeiro,et al.  Local search with perturbations for the prize‐collecting Steiner tree problem in graphs , 2001, Networks.

[45]  N. Z. Shor,et al.  A minimization method using the operation of extension of the space in the direction of the difference of two successive gradients , 1971 .

[46]  Young-Soo Myung,et al.  On the generalized minimum spanning tree problem , 1995, Networks.

[47]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[48]  J. E. Beasley An SST-based algorithm for the steiner problem in graphs , 1989, Networks.

[49]  R. E. Marsten,et al.  The Boxstep Method for Large-Scale Optimization , 2011, Oper. Res..

[50]  Mohamed Haouari,et al.  Upper and lower bounding strategies for the generalized minimum spanning tree problem , 2006, Eur. J. Oper. Res..

[51]  Egon Balas,et al.  The prize collecting traveling salesman problem , 1989, Networks.

[52]  Moshe Dror,et al.  Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm , 2005, J. Oper. Res. Soc..

[53]  Laura Bahiense,et al.  Solving Steiner Tree Problems in Graphs with Lagrangian Relaxation , 2003, J. Comb. Optim..

[54]  Arie Segev,et al.  The node-weighted steiner tree problem , 1987, Networks.

[55]  Carlos Eduardo Ferreira,et al.  Decomposing Matrices into Blocks , 1998, SIAM J. Optim..

[56]  N. Z. Shor Convergence rate of the gradient descent method with dilatation of the space , 1970 .

[57]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[58]  Francisco Barahona,et al.  The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..