Linear stability of the collisionless, large Larmor radius Z-pinch

The Vlasov fluid model is used to study the m=0 and m=1 internal and free boundary modes in a collisionless, large Larmor radius Z pinch. Two methods (initial value and variational) are employed, and give good agreement. The growth rate can be reduced from its zero Larmor radius value by a factor of up to 10 for m=1, and up to 3 for m=0. Stability thresholds and the role of resonant ions are discussed.

[1]  T. Arber,et al.  Kinetic stability of the finite electron temperature Z-pinch , 1997 .

[2]  Russell,et al.  Linear Stability of the High Temperature, Dense Z Pinch. , 1995, Physical review letters.

[3]  Arber,et al.  Large Larmor radius stability of the z pinch. , 1994, Physical review letters.

[4]  T. Arber Vlasov fluid stability of a skin current Z pinch with finite electron pressure , 1991 .

[5]  Haines,et al.  Universal diagram for regimes of Z-pinch stability. , 1991, Physical review letters.

[6]  J. Chittenden,et al.  Processes terminating radiative collapse in a hydrogen fiber Z pinch , 1990 .

[7]  H. Åkerstedt Gyrokinetic stability theory of z–pinches , 1990, Journal of Plasma Physics.

[8]  J. Scheffel,et al.  Finite-Larmor-radius effects on z–pinch stability , 1989, Journal of Plasma Physics.

[9]  J. Schwarzmeier,et al.  Variational nature of dispersion equations revisited , 1988 .

[10]  H. Åkerstedt Finite Larmor radius effects on the stability properties of internal modes of a Z-pinch , 1988 .

[11]  Gerber,et al.  Enhanced stability and neutron production in a dense Z-pinch plasma formed from a frozen deuterium fiber. , 1987, Physical review letters.

[12]  Daniel C. Barnes,et al.  Kinetic tilting stability of field‐reversed configurations , 1986 .

[13]  J. Drake Experimental studies of an extrap Z-pinch , 1984 .

[14]  H. Lewis,et al.  Stability of Vlasov equilibria. Part 3. Models , 1982, Journal of Plasma Physics.

[15]  D. Barnes,et al.  Finite Larmor radius model for axisymmetric compact toroids , 1981 .

[16]  J. Freidberg,et al.  Resonant particle effects on finite Larmor radius stabilization , 1980 .

[17]  C. Seyler Vlasov‐fluid stability of a rigidly rotating theta pinch , 1979 .

[18]  M. Haines Particle orbits, diamagnetism, and energy balance in a Z-pinch satisfying the Lawson criterion , 1978 .

[19]  J. Freidberg,et al.  Finite‐gyroradius stabilization of diffuse high beta stellarators , 1977 .

[20]  M. Haines,et al.  Stability considerations of a hot cylindrical pinch , 1976 .

[21]  P. H. Sakanaka,et al.  New approach to magnetohydrodynamic stability. I. A practical stability concept , 1974 .

[22]  J. Freidberg Vlasov‐Fluid Model for Studying Gross Stability of High‐β Plasmas , 1972 .

[23]  W. R. Butler,et al.  π+p elastic scattering at 3.6 GeV/c , 1971 .

[24]  F. C. Hoh Simple Picture of the Finite Larmor Radius Stabilization Effect , 1963 .