A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein

The structure of the TATA-box bound to the TATA-binding protein revealed a new and unexpected deformation of the double helix leading to a sharp change in the DNA trajectory. Here we show that the deformation imposed upon the TATA-box represents a novel form of the double helix—named TA-DNA—which differs from A-DNA by a single conformational parameter, namely the rotation around the glycosidic bond. This rotation causes a 50° inclination of the base pairs in the TATA-box which in turn results in abrupt change in the trajectory of the flanking B-DNA segments. The observation that the TATA sequence can assume an A-DNA conformation coupled to the simplicity of the transition from A-DNA to TA-DNA may be the reason for the presence of the TATA sequence in a wide range of promoters.

[1]  D M Crothers,et al.  Intrinsically bent DNA. , 1990, The Journal of biological chemistry.

[2]  D. Rabinovich,et al.  The effect of the base sequence on the fine structure of the DNA double helix. , 1986, Progress in biophysics and molecular biology.

[3]  Steven Hahn,et al.  Crystal structure of a yeast TBP/TATA-box complex , 1993, Nature.

[4]  Nicholas R. Cozzarelli,et al.  DNA topology and its biological effects , 1990 .

[5]  A. Travers,et al.  Reading the minor groove , 1995, Nature Structural Biology.

[6]  Stephen K. Burley,et al.  1.9 Å resolution refined structure of TBP recognizing the minor groove of TATAAAAG , 1994, Nature Structural Biology.

[7]  C. J. Alden,et al.  Bent DNA: visualization of a base-paired and stacked A-B conformational junction. , 1979, The Journal of biological chemistry.

[8]  S. Grossman,et al.  Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DMA-binding domain bound to its DNA target , 1992, Nature.

[9]  H R Drew,et al.  Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. , 1982, The Journal of biological chemistry.

[10]  M. Eisenstein,et al.  Hydration patterns and intermolecular interactions in A-DNA crystal structures. Implications for DNA recognition. , 1995, Journal of molecular biology.

[11]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[12]  S. A. Salisbury,et al.  Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C). , 1983, Journal of molecular biology.

[13]  D. Suck,et al.  DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. , 1991, Journal of molecular biology.

[14]  R. Dickerson,et al.  DNA structure from A to Z. , 1992, Methods in enzymology.

[15]  D. Suck,et al.  X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution. , 1992, Journal of molecular biology.

[16]  M. Sundaralingam,et al.  Crystal and molecular structure of the alternating dodecamer d(GCGTACGTACGC) in the A-DNA form: comparison with the isomorphous non-alternating dodecamer d(CCGTACGTACGG). , 1992, Nucleic acids research.

[17]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[18]  S. A. Salisbury,et al.  Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C) , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  Stephen K. Burley,et al.  Co-crystal structure of TBP recognizing the minor groove of a TATA element , 1993, Nature.

[20]  Hen-Ming Wu,et al.  The locus of sequence-directed and protein-induced DNA bending , 1984, Nature.

[21]  S. Diekmann,et al.  Definitions and nomenclature of nucleic acid structure parameters. , 1989, The EMBO journal.

[22]  T. Steitz,et al.  Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees , 1991, Science.

[23]  A. Klug,et al.  Opening the gateway , 1993, Nature.

[24]  C. Hunter,et al.  Sequence-dependent DNA structure. The role of base stacking interactions. , 1993, Journal of molecular biology.

[25]  A. Joachimiak,et al.  Determinants of repressor/operator recognition from the structure of the trp operator binding site , 1994, Nature.