Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films

With the advancement of modulation technology and the requirement for device miniaturization and integration, lithium niobate on insulator (LNOI) can be a versatile platform for this pursuit, as it can confine the transmitted light at the nanoscale, leading to a strong light–matter interaction, which can sensitively capture external variations, such as electric fields and temperature. This paper presents a compact microring modulator with versatile tuning based on X-cut LNOI. The LNOI modulator equipped with electrodes with a coverage angle of 120∘ achieved a maximum electro-optic (EO) tuning efficiency of 13 pm/V and a maximum extinction ratio of 11 dB. The asymmetry in the static or quasi-static electro-optic tuning of the microring modulator was also analyzed. Furthermore, we measured the thermal-optic effect of the device with a sensitivity of 26.33 pm/∘C, which can potentially monitor the environment temperature or compensate for devices’ functional behavior. The demonstrated efficient and versatile compact microring modulator will be an important platform for on-chip active or passive photonic components, microring-based sensor arrays and integrated optics.

[1]  A. Boes,et al.  Monolithic Photonic Integrated Circuit Based on Silicon Nitride and Lithium Niobate on Insulator Hybrid Platform , 2022, Advanced Photonics Research.

[2]  Lijian Zhang,et al.  Deterministic N-photon state generation using lithium niobate on insulator device , 2022, Advanced Photonics Nexus.

[3]  X. Yi,et al.  Integrated silicon carbide electro-optic modulator , 2022, Nature Communications.

[4]  Kecheng Zhang,et al.  Ultra-high-linearity integrated lithium niobate electro-optic modulators , 2022, Photonics Research.

[5]  S. Tang,et al.  Monolithic Kerr and electro-optic hybrid microcombs , 2022, Optica.

[6]  C. Reimer,et al.  Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy , 2020, Communications Physics.

[7]  K. Rottwitt,et al.  Thermal Behaviors and Optical Parametric Oscillation in 4H‐Silicon Carbide Integrated Platforms , 2021, Advanced Photonics Research.

[8]  D. Dai,et al.  Compact Racetrack Resonator on LiNbO3 , 2020, Journal of Lightwave Technology.

[9]  G. Guo,et al.  Efficient Frequency Conversion in a Degenerate χ^{(2)} Microresonator. , 2020, Physical review letters.

[10]  Yansong Yang,et al.  Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. , 2020, Optics express.

[11]  Ya Cheng,et al.  Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching , 2020 .

[12]  Di Zhu,et al.  On-chip electro-optic frequency shifters and beam splitters , 2020, Nature.

[13]  S. Gong,et al.  Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. , 2020, Optics express.

[14]  Tzyy-Jiann Wang,et al.  On-Chip Optical Microresonators With High Electro-Optic Tuning Efficiency , 2020, Journal of Lightwave Technology.

[15]  Andrew J. Mercante,et al.  Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. , 2020, Optics letters.

[16]  Shuang Wang,et al.  Dispersion Measurement of Electro-Optic Coefficient γ22 of Lithium Niobate Based on Photoelastic Modulation , 2020, Applied Sciences.

[17]  Keisuke Kojima,et al.  Miniaturized Silicon Photonics Devices for Integrated Optical Signal Processors , 2020, Journal of Lightwave Technology.

[18]  H. Tang,et al.  Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W , 2019, Optica.

[19]  Andrew J. Mercante,et al.  High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform. , 2019, Optics express.

[20]  S. Gong,et al.  Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate. , 2019, Optics express.

[21]  A. Peruzzo,et al.  High coupling efficiency grating couplers on lithium niobate on insulator. , 2019, Optics express.

[22]  S. Shi,et al.  Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. , 2019, Optics letters.

[23]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[24]  M. Lončar,et al.  Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation , 2018, Nature Communications.

[25]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[26]  Yu-Ping Huang,et al.  Naturally Phase Matched Lithium Niobate Nanocircuits for Integrated Nonlinear Photonics , 2018, 1805.11476.

[27]  Q. Lin,et al.  Dispersion-engineered high quality lithium niobate microring resonators , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[28]  Christian G. Bottenfield,et al.  Lithium Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform , 2018, IEEE Photonics Journal.

[29]  Alberto Peruzzo,et al.  Ultra-low loss photonic circuits in lithium niobate on insulator. , 2017, Optics express.

[30]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[31]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[32]  Huiying Hu,et al.  Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector , 2017 .

[33]  J. Xia,et al.  Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide , 2017, IEEE Photonics Journal.

[34]  Yuan Wang,et al.  Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes. , 2016, Optics letters.

[35]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[36]  K. Chiang,et al.  Lithium-Niobate Mach-Zehnder Interferometer With Enhanced Index Contrast by SiO2 Film , 2015, IEEE Photonics Technology Letters.

[37]  Guo-Qiang Lo,et al.  50-Gb/s silicon optical modulator with traveling-wave electrodes. , 2013, Optics express.

[38]  Guo-Qiang Lo,et al.  Ultralow drive voltage silicon traveling-wave modulator. , 2012, Optics express.

[39]  J. Klootwijk,et al.  Maxwell–Wagner instability in bilayer dielectric stacks , 2009 .

[40]  Valerio Pruneri,et al.  Micro‐structured integrated electro‐optic LiNbO3 modulators , 2009 .

[41]  Tzyy-Jiann Wang,et al.  Electro-optically tunable microring resonators on lithium niobate. , 2007, Optics letters.

[42]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[43]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[44]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .